An integral imaging system enabling extended depth of field was proposed and demonstrated based on a birefringence lens array (BLA) whose focal length was switched via the light polarization. The lens array system was constructed by combining two different liquid crystal(LC) embedded lens arrays, BLA I and II, which were fabricated by injecting a ZLI-4119 LC and an E-7 LC in between a lens array substrate and an ITO (indium-tin-oxide) glass plate respectively. The BLA I played a role as a convex lens only for the polarization parallel to the ordinary axis of the corresponding LC, but it serves as a plain medium for that along its extraordinary one since the refractive indexes of the lens and the LC are almost identical. Meanwhile, the BLA II played a role as a concave lens only for the polarization parallel to the extraordinary axis of the LC but as a plain medium for that along its ordinary one. As a result, the focal length could be switched via the polarization, and it was measured to be 680 mm and -29 mm. For the proposed system with the prepared BLAs, both real and virtual three-dimensional (3D) images were efficiently reconstructed at the positions of z=1300 mm and z=-30 mm with no significant degradation in the resolution, indicating its depth of field range.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.17.019047DOI Listing

Publication Analysis

Top Keywords

lens array
16
integral imaging
8
imaging system
8
based birefringence
8
lens
8
birefringence lens
8
depth field
8
focal length
8
length switched
8
bla played
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!