Phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins play essential roles in DNA-based and RNA-based processes, such as the response to DNA damage, messenger RNA (mRNA) quality control, transcription, and translation, where they contribute to the maintenance of genome integrity and accurate gene expression. The adenosine triphosphatases associated with diverse cellular activities (AAA+) family proteins RuvB-like 1 (RUVBL1) and RUVBL2 are involved in various cellular processes, including transcription, RNA modification, DNA repair, and telomere maintenance. We show that RUVBL1 and RUVBL2 associate with each PIKK family member. We also show that RUVBL1 and RUVBL2 control PIKK abundance at least at the mRNA level. Knockdown of RUVBL1 or RUVBL2 decreased PIKK abundance and impaired PIKK-mediated signaling. Analysis of SMG-1, a PIKK family member involved in nonsense-mediated mRNA decay (NMD), revealed an essential role for RUVBL1 and RUVBL2 in NMD. RUVBL1 and RUVBL2 associated with SMG-1 and the messenger ribonucleoproteins in the cytoplasm and promoted the formation of mRNA surveillance complexes during NMD. Thus, RUVBL1 and RUVBL2 regulate PIKK functions on two different levels: They control the abundance of PIKKs, and they stimulate the formation of PIKK-containing molecular complexes, such as those involved in NMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scisignal.2000468 | DOI Listing |
Life Sci Alliance
February 2025
Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
A G4C2 hexanucleotide repeat expansion in is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Genetics, Yale University School of Medicine, New Haven, CT 06510.
Axonemal dynein, the macromolecular machine that powers ciliary motility, assembles in the cytosol with the help of dynein axonemal assembly factors (DNAAFs). These DNAAFs localize in cytosolic foci thought to form via liquid-liquid phase separation. However, the functional significance of DNAAF foci formation and how the production and assembly of multiple components are so efficiently coordinated, at such enormous scale, remain unclear.
View Article and Find Full Text PDFJ Mol Biol
December 2024
IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France. Electronic address:
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA.
Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt's lymphoma and multiple myeloma (MM).
View Article and Find Full Text PDFNat Commun
August 2024
Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!