We investigated the characteristics of a total of 96 Acinetobacter spp. isolates that were shown to cause bacteremia and urinary tract infections (UTIs) from 10 university hospitals located in various regions of Korea from November 2006 to August 2007. The antimicrobial susceptibilities of these isolates were determined using a broth microdilution method, and the species were identified using molecular identification. In addition, we performed multilocus sequence typing for Acinetobacter baumannii subgroup A isolates. A. baumannii subgroup A was the most prevalent in patients with both bacteremia (32 isolates, 53.3%) and UTIs (20 isolates, 55.6%), followed by Acinetobacter genomic species 13TU (15.0% and 27.8% in bacteremia and UTIs, respectively). A. baumannii subgroup B and Acinetobacter junii were found exclusively in isolates causing bacteremia (seven and five isolates, respectively). Among 96 Acinetobacter spp. isolates, 19.8% were resistant to imipenem and 25.0% were resistant to meropenem. Most carbapenem-resistant A. baumannii isolates contained PER or oxacillinase-23-like enzymes (65.2% and 78.3%, respectively). In addition, 13.5% were resistant to polymyxin B and 17.7% were resistant to colistin. A. baumannii subgroup A isolates (52 isolates, 54.2%) showed higher resistance rates to most antimicrobial agents than other species, but not to colistin. Among A. baumannii subgroup A isolates, ST22 was the most prevalent genotype (33 isolates, 63.5%) and showed higher resistance rates to all antimicrobial agents than the other genotypes. In addition, four out of five polymyxin-resistant A. baumannii group A isolates belonged to ST22. Thus, dissemination of the main clone of A. baumannii, ST22, may contribute to the high resistance rates of Acinetobacter isolates to antimicrobials, including carbapenems, in Korea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/mdr.2009.0088 | DOI Listing |
Antibiotics (Basel)
November 2024
Division of Antimicrobial Resistance Research, National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea.
Background/objectives: Bloodstream infection by carbapenem-resistant (CRAB) is a serious clinical problem worldwide. To study its clonal relationship and genetic features, we report the draft genome sequence of CRAB strains isolated from human blood in South Korea.
Methods: Among strains isolated from patients at nine general hospitals in 2020, 12 CRAB strains of different genotypes were selected.
Syst Rev
December 2024
Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: For resistant Gram-positive bacteria, evidence suggests that combination therapy is more effective. However, for resistant Gram-negative bacteria, no consensus has been reached. This study aims to comprehensively summarize the evidence and evaluate the impact of combination versus monotherapy on infections caused by carbapenem-resistant Gram-negative bacteria (CRGNB).
View Article and Find Full Text PDFPLoS One
December 2024
Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
Infect Drug Resist
October 2024
Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China.
Purpose: To evaluate the clinical outcomes and safety of tigecycline (TGC) plus cefoperazone/sulbactam (CPS) or TGC monotherapy in patients with hospital-acquired pneumonia (HAP) caused by Carbapenem-Resistant (CRAB).
Methods: This was a retrospective analysis of multicenter data from 62 Chinese hospitals with CRAB HAP. Risk factors for receiving TGC with CPS therapy and predictors of mortality were assessed using multivariate logistic and Cox regression analyses, respectively.
J Infect
November 2024
Department of Lung Transplantation Center, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China. Electronic address:
Objective: To explore the risk factors for pulmonary bacterial infection (PBI) after lung transplantation (LTX) and to evaluate the impact of PBI on short-term postoperative mortality.
Methods: We retrospectively analyzed data on 549 recipients who underwent LTX at the Affiliated Wuxi People's Hospital of Nanjing Medical University, China, between January 2018 and December 2021. The risk factors for PBI after LTX were explored by univariate analysis and multivariate logistic regression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!