Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the arrangements of recurved bristles on the anterior wing margin of wild-type and mutant Drosophila. The epidermal or neural fate of a proneural cell depends on the concentrations of proteins of the achaete-scute complex. At puparium formation, concentrations of proteins are nearly identical in all cells of the anterior wing and each cell has the potential for neural fate. In wild-type flies, the action of regulatory networks drives the initial state to one where a bristle grows out of every fifth cell. Recent experiments have shown that the frequency of recurved bristles can be made to change by adjusting the mean concentrations of the zinc-finger transcription factor Senseless and the micro-RNA miR-9a. Specifically, mutant flies with reduced levels of miR-9a exhibit ectopic bristles, and those with lower levels of both miR-9a and Senseless show regular organization of recurved bristles, but with a lower periodicity of 4. We argue that these characteristics can be explained assuming an underlying Turing-type bifurcation whereby a periodic pattern spontaneously emerges from a uniform background. However, bristle patterns occur in a discrete array of cells, and are not mediated by diffusion. We argue that intracellular actions of transmembrane proteins such as Delta and Notch can play a role of diffusion in destabilizing the homogeneous state. In contrast to diffusion, intercellular actions can be activating or inhibiting; further, there can be lateral cross-species interactions. We introduce a phenomenological model to study bristle arrangements and make several model-independent predictions that can be tested in experiments. In our theory, miRNA-9a is one of the components of the underlying network and has no special regulatory role. The loss of periodicity in its absence is due to the transfer of the system to a bistable state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3368727 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!