We present a method of modeling the basin of attraction as a three-dimensional function describing a two-dimensional manifold on which the dynamics of the system evolves from experimental time series data. Our method is based on the density of the data set and uses numerical optimization and data modeling tools. We also show how to obtain analytic curves that describe both the contours and the boundary of the basin. Our method is applied to the problem of regaining balance after perturbation from quiet vertical stance using data of an elite athlete. Our method goes beyond the statistical description of the experimental data, providing a function that describes the shape of the basin of attraction. To test its robustness, our method has also been applied to two different data sets of a second subject and no significant differences were found between the contours of the calculated basin of attraction for the different data sets. The proposed method has many uses in a wide variety of areas, not just human balance for which there are many applications in medicine, rehabilitation, and sport.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3337690DOI Listing

Publication Analysis

Top Keywords

basin attraction
16
modeling basin
8
two-dimensional manifold
8
data
8
experimental data
8
method applied
8
data sets
8
method
6
attraction
4
attraction two-dimensional
4

Similar Publications

The existing research studies on the basin stability of stochastic systems typically focus on smooth systems, or the attraction basins are pre-defined as easily solvable regular basins. In this work, we introduce a new framework to discover the basin stability from state time series in the non-smooth stochastic competition system under threshold control. Specifically, we approximate the drift and diffusion with threshold control parameters by an extended Kramers-Moyal expansion with initial state partitioning.

View Article and Find Full Text PDF

Conflicts within the tsetse fly belt revealed a strong correlation between the dynamics of bovine trypanosomosis and the insurgency involving farmers and herders in Nigeria and parts of West Africa. This study examined the history, causes and influence of farmers-herdsmen conflicts on banditry, terrorism and food security as it relates to the epidemiology of African animal trypanosomosis (AAT). A combination of literature database searches, semi-structured questionnaires, and mathematical modeling was employed.

View Article and Find Full Text PDF

Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.

View Article and Find Full Text PDF

The dynamics of the convergence for the stationary state considering a Duffing-like equation are investigated. The driven potential for these dynamics is supplied by a damped forced oscillator that has a piecewise linear function. Fixed points and their basins of attraction were identified and measured.

View Article and Find Full Text PDF

The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR.

Nat Commun

December 2024

Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.

Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!