We have recently developed a soft-landing (SL) instrument that is capable of depositing ions onto substrates for preparative and developmental research of new materials using a laser ablation source. This instrument was designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas. These collisions allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. Experiments will be shown ablating Cu using an Nd:YAG (1064 and 532 nm) for cluster formation and landing onto a muscovite (mica) surface. The laser ablation of Cu in 8 Torr of He gas gives a spectrum that contains multiple peaks corresponding to Cu(n), Cu(n)O(m) clusters, and their corresponding isomers. Atomic force microscopy and drift tube measurements were performed to characterize the performance characteristics of the instrument.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3361041DOI Listing

Publication Analysis

Top Keywords

drift tube
16
laser ablation
12
split-ring ion
8
ion optic
8
ions
5
drift
4
tube soft-landing
4
soft-landing production
4
production characterization
4
characterization materials
4

Similar Publications

Use of Resonant Acoustic Fields as Atmospheric-Pressure Ion Gates.

Anal Chem

January 2025

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.

Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.

View Article and Find Full Text PDF

Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.

View Article and Find Full Text PDF

As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.

View Article and Find Full Text PDF

High resolving power electrospray drift tube ion mobility spectrometer with heated desolvation tube.

Anal Chim Acta

February 2025

University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland. Electronic address:

Background: The separation performance of drift tube ion mobility spectrometers is usually relatively weak with resolving powers well below 100. Improving this aspect requires, besides the optimization of other parameters, the challenging increase of the drift voltage as deduced from fundamental equations describing the broadening of a drifting ion swarm. We recently succeeded in constructing an improved high voltage instrument equipped with an electrospray source capable of analysing liquid samples with resolving powers above 200.

View Article and Find Full Text PDF

Charge detection mass spectrometry (CDMS) allows direct mass measurement of heterogeneous samples by simultaneously determining the charge state and the mass-to-charge ratio (/) of individual ions, unlike conventional MS methods that use large ensembles of ions. CDMS typically requires long acquisition times and the collection of thousands of spectra, each containing tens to hundreds of ions, to generate sufficient ion statistics, making it difficult to interface with the time scales of online separation techniques such as ion mobility. Here, we demonstrate the application of Fourier transform multiplexing and drift tube ion mobility joined with Orbitrap-based CDMS for the analysis of multimeric protein complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!