A space-resolved extreme ultraviolet (EUV) spectrometer working in 60-400 A range has been developed to observe impurity emission profiles in core and edge plasmas of Large Helical Device (LHD). A flat focus is made for plane surface detector by using a varied line spacing holographic grating with an angle of incidence of 87 degrees. An excellent spectral resolution of 0.22 A at 200 A is then obtained after careful adjustment of the optical components. In the profile measurement of the LHD plasmas, the toroidal resolution is important as well as the radial resolution because the magnetic surfaces of LHD quickly change when the observation chord is tilted at a slightly different toroidal location. Horizontal dispersion is therefore selected for the present spectrometer. As a result, the toroidal resolution of 75 mm is achieved at the plasma position. An enough radial resolution of 10 mm is also obtained at spatial-resolution slit width of 0.2 mm. In order to measure the full radial profile of LHD plasmas the spectrometer is placed at a distance of approximately 9200 mm away from the plasma center and a backilluminated charge-coupled device with a size of 6.6x26.6 mm(2) is set vertical to the horizontal dispersion. Half of the LHD plasma, i.e., approximately 50 cm, can be measured along the vertical direction at horizontally elongated plasma cross section. A full vertical profile can be obtained by changing the vertical angle of the EUV spectrometer. As an example the full vertical profile of edge C IV (312.4 A) emission is presented. A wavelength interval of 35-65 A can be simultaneously observed, which varies according to the wavelength to be measured. A local emission profile of Fe XX (132.67 A) is also presented after Abel inversion as a typical example of the core EUV emission. Finally, the EUV spectrometer is absolutely calibrated using EUV bremsstrahlung continuum profile in comparison with absolute values of visible bremsstrahlung continuum profile because the bremsstrahlung continuum can be easily detected in high-density discharges of LHD.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3299060DOI Listing

Publication Analysis

Top Keywords

euv spectrometer
12
bremsstrahlung continuum
12
space-resolved extreme
8
extreme ultraviolet
8
impurity emission
8
profile
8
emission profile
8
profile measurement
8
large helical
8
helical device
8

Similar Publications

Spectral measurements play a vital role in understanding laser-plasma interactions. The ability to accurately measure the spectrum of radiation sources is crucial for unraveling the underlying physics. In this article, we introduce a novel approach that significantly enhances the efficiency of binary sinusoidal transmission grating spectrometers .

View Article and Find Full Text PDF
Article Synopsis
  • A new imaging EUV-soft X-ray spectrometer and monochromator has been designed, achieving over 60% throughput efficiency and a high spectral resolution of λ/Δλ > 200 without using variable line spacing gratings.
  • The system utilizes conical diffraction geometry for optimal imaging across a wide spectral range while preserving polarization states and ensuring minimal temporal dispersion, with pulse broadening confined to 80 fs.
  • This versatile instrument can be easily converted into a monochromator, enabling coherent diffractive imaging in the EUV-soft X-ray range and enhancing the ability to study complex nano- and bio-systems with improved resolution, reaching the nanometer-femtosecond scale.
View Article and Find Full Text PDF

Novel MCP-Windowed EUV Light Source and Its Mass Spectrometric Application for Detecting Chlorinated Methanes.

Anal Chem

November 2023

Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.

Various vacuum ultraviolet (VUV) lamps are simple and convenient VUV light sources for mass spectrometry and other research fields. However, the strong absorption of high-energy photons by window materials limits the application of an extreme ultraviolet (EUV) light. In this study, a novel high-flux EUV light source is developed using a microchannel plate (MCP) window to transmit 73.

View Article and Find Full Text PDF

We present in-flight performance measurements of the Ionospheric Connection Explorer EUV spectrometer, , a wide field ( ) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54-88 nm, are the Oii emission lines at 61.6 nmand 83.

View Article and Find Full Text PDF

Two pairs of space-resolved extreme ultraviolet (EUV) spectrometers working at 5-138 Å with different vertical observation ranges of -7 ≤ Z ≤ 19 and -18 ≤ Z ≤ 8 cm have been newly developed to observe the radial profile of impurity line emissions and to study the transport of high-Z impurity ions intrinsically existing in EAST tokamak plasmas. Both spectrometers are equipped with a complementary metal-oxide semiconductor (CMOS) detector (Andor Marana-X 4.2B-6, Oxford Instruments) with sensitive area of 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!