The shell cross-linked (SCL) thermoresponsive hybrid poly(N-isopropylacrylamide-co-aminoethyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-AMA)-b-PMMA) micelle consisting of a cross-linked thermoresponsive hybrid shell and a hydrophobic core domain was fabricated via a two-step process: micellization of P(NIPAAm-co-AMA)-b-PMMA in aqueous solution followed by cross-linking of the hydrophilic shell layer via the amidation reaction between the amine groups of AMA units and the carboxylic acid functions of 1,1'-ferrocenedicarboxylic acid. The SCL micelle showed reversible dispersion/aggregation in response to the temperature cycles through the lower critical solution temperature (LCST) of the thermoresponsive hybrid shell at around 36 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). Besides the usage as an inorganic difunctional cross-linker, the inorganic ferrocene segment further endowed the SCL hybrid micelle with the antitumor efficacy, namely, the resulting SCL micelle exhibited a remarkable cytotoxic effect for HeLa cells with a very low IC50. The results showed that the SCL hybrid micelle developed in this study could be potentially used as an antitumor agent, which is unique compared to the conventional tumor therapy by using the antitumor drug loaded in the micellar core.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp100901p | DOI Listing |
J Colloid Interface Sci
January 2025
College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China. Electronic address:
Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).
View Article and Find Full Text PDFChembiochem
January 2025
National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, Shandong, 266237, P. R China.
Nucleotide sugars (NSs) are essential building blocks for the enzymatic assembly of glycans. In this study, we established a preparation and recycling avenue to the biocatalysts for the enzymatic synthesis of NSs. This approach involves fusing two enzymes into a bifunctional chimera and using elastin-like polypeptides (ET64) as a purification tag, which allows for easy recovery of these biocatalysts without the need for chromatography.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:
Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China.
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!