Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We examined the structure and distribution of microdomains in ternary multilamellar and unilamellar vesicles representing a canonical model raft mixture consisting of dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), and cholesterol via contrast matched small-angle neutron scattering (SANS). The impetus of the work was to reveal the size and distribution of microdomains consistent with the form factor and intermolecular structure factor S(Q) of the scattering pattern of unilamellar and multilamellar vesicles prepared from this ternary lipid system. The data are consistent with the presence of cylindrically shaped microdomains with an average radius of approximately 15 nm assembled in a fractal-like geometry, and with corresponding modeling studies. In the multilamellar vesicle system, coupling of domains across the interlamellar water layer is observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp101167n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!