In luteal and granulosa cells, hydrogen peroxide abruptly inhibits activation of adenylate cyclase by receptor-bound gonadotropin and blocks steroidogenesis. In the present studies a post-cAMP site of peroxide action on inhibition of steroidogenesis was investigated. Steroidogenesis, stimulated by dibutyryl or 8-bromo-cAMP, was inhibited by hydrogen peroxide. Yet, cAMP-dependent protein kinase activation in cytosol or intact cells was unaffected by peroxide treatment. Hydrogen peroxide also did not inhibit the activity of cholesterol esterase and acyl coenzyme-A:acyltransferase. Progesterone synthesis was maximally increased 5- to 50-fold with 25- and 22-hydroxycholesterol, respectively. Unlike that seen with cAMP analogs and LH, however, progestin synthesis stimulated by these cell- and mitochondria-permeant cholesterol analogs was not inhibited by hydrogen peroxide. Treatment of animals with amino-glutethimide produces a marked accumulation of steroidogenic cholesterol substrate and a large increase in hormone-independent steroidogenesis in subsequently isolated and washed luteal tissue. In this paradigm, hydrogen peroxide did not inhibit elevated basal progesterone synthesis in luteal cells produced by in vivo aminoglutethimide treatment, yet LH-stimulated steroidogenesis was blocked. However, treatment of luteal cells with hydrogen peroxide inhibited pregnenolone synthesis in isolated mitochondria, an effect partially reversed by the addition of luteal cell cytosol. In summary, while peroxide inhibited cAMP-dependent steroidogenesis, it did not appear to inhibit protein kinase activation or mobilization of cholesterol from intracellular esterified stores. Although peroxide inhibited pregnenolone synthesis, it had no effect on steroidogenesis when substrate was made available by either addition of cholesterol analogs or prior treatment with aminoglutethimide in vivo. We conclude, therefore, that hydrogen peroxide inhibits steroidogenesis by blocking intracellular transport of cholesterol to mitochondria or translocation of cholesterol across the outer mitochondrial membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo-128-6-2958DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
32
peroxide
12
luteal cells
12
peroxide inhibited
12
cholesterol
8
cells hydrogen
8
steroidogenesis
8
inhibited hydrogen
8
protein kinase
8
kinase activation
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

AIMST University, Bedong, Kedah, Malaysia.

Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.

Background: The present study recapitulates the potency of the novel synthesized piperazine-benzoquinone derivative as a lead molecule selectively targeting AChE along with the antioxidative potential for the management of cognitive decline in Alzheimer's disease.

Method: Novel piperazine-benzoquinone derivative was synthesized implementing appropriate synthetic procedures and was characterized by various spectral and elemental techniques. The purity of this synthetic analogue was ascertained by TLC, melting point determination and elemental analyses.

View Article and Find Full Text PDF

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Background: Emphysematous esophagitis is a very rare disease and there are only a few previous reports in the literature. Previously reported cases have resulted in emphysematous esophagitis following anterior cervical procedures or ingestion of hydrogen peroxide (HP). In this report, we describe a case in which a patient with emphysematous esophagitis accompanied by gastritis without the above predisposing factors was treated with conservative treatment.

View Article and Find Full Text PDF

Isomer-Effects of Aminophenol Decorated Gold Nanoclusters for HO Photoproduction via Two-Step One-Electron Oxygen Reduction Reaction.

Small

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (HO) photoproduction through two-step one-electron oxygen reduction reaction (ORR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!