Transition-metal complexes containing amino acids encapsulated within solid supports generate isolated active centres that function as effective selective oxidation catalysts using benign oxidants such as air and display high turnovers and selectivity in industrially significant oxidation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b926721b | DOI Listing |
Curr Protoc
January 2025
Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
Understanding the dynamic pathophysiology of diseases in the lung, such as asthma and chronic asthma, chronic obstructive pulmonary disease, and lung cancer, is crucial for the treatment, analysis, and outcome of these diseases. Unlike other traditional models, we suggest a protocol that is sustainable and reproducible and offers different analysis methods while maintaining in vivo lung architecture and immune dynamics. This protocol allows one to study the pathophysiological changes, including changes to the immune cells, cytokines, and mediators, in 30 precision-cut lung slices from a single murine lung.
View Article and Find Full Text PDFChemistry
January 2025
Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren-ai Road, 215123, Suzhou, CHINA.
Research on CO activation and homologation is pivotal for promoting sustainable chemistry and the construction of Cn molecular blocks. This work reports the nickel-catalyzed reduction of CO by magnesium alkyl compounds utilizing a bimetallic Mg/Ni synergistic strategy. The exposure of β-diketiminato ligand-supported magnesium monoalkyl compounds LMgR (L = [(DippNCMe)2CH]-, Dipp = 2,6-iPr2C6H3; R = nBu, CH3, C5H9) to 1 bar of CO in the presence of 10 mol% Ni(COD)2 (COD: 1,5-cyclooctadiene) selectively afforded the CO single-insertion product [LMg(CHO)C5H8], the dimerization product [(LMg)2(μ-C2O2)(CH3)2], and the linear trimerization product [(LMg)2(μ-C3O3)(nBu)2], respectively, depending on the R group.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6845, Australia.
Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan.
Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Dentistry, Yeungnam University College of Medicine, Daegu, Republic of Korea.
Background/purpose: Membrane-free stem cell components (MFSCCs) have been developed by removing cell membranes with antigens to overcome the limitations associated with cell-based therapies and isolate effective peptides. MFSCCs have been reported to have effects on oral infection sites. Chronic inflammatory diseases cause excessive bone resorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!