TNFalpha induces choroid plexus epithelial cell barrier alterations by apoptotic and nonapoptotic mechanisms.

J Biomed Biotechnol

Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.

Published: July 2010

The choroid plexus epithelium constitutes the structural basis of the blood-cerebrospinal fluid barrier. Since the cytokine TNFalpha is markedly increased during inflammatory diseases in the blood and the central nervous system, we investigated by which mechanisms TNFalpha induces barrier alteration in porcine choroid plexus epithelial cells. We found a dose-dependent decrease of transepithelial electrical resistance, increase of paracellular inulin-flux, and induction of histone-associated DNA fragmentation and caspase-3 activation after TNFalpha stimulation. This response was strongly aggravated by the addition of cycloheximide and could partially be inhibited by the NF-kappaB inhibitor CAPE, but most effectively by the pan-caspase-inhibitor zVAD-fmk and not by the JNK inhibitor SP600125. Partial loss of cell viability could also be attenuated by CAPE. Immunostaining showed cell condensation and nuclear binding of high-mobility group box 1 protein as a sign of apoptosis after TNFalpha stimulation. Taken together our findings indicate that TNFalpha compromises PCPEC barrier function by caspase and NF-kappaB dependent mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847764PMC
http://dx.doi.org/10.1155/2010/307231DOI Listing

Publication Analysis

Top Keywords

choroid plexus
12
tnfalpha induces
8
plexus epithelial
8
tnfalpha stimulation
8
tnfalpha
6
induces choroid
4
epithelial cell
4
barrier
4
cell barrier
4
barrier alterations
4

Similar Publications

Much evidence suggests that the choroid plexus (CP) plays an important role in the pathophysiology of systemic lupus erythematosus (SLE), but its imaging profile in neuropsychiatric SLE (NPSLE) remains unexplored. To evaluate CP volume in NPSLE patients using MRI. This retrospective study evaluated patients with SLE who underwent MRI of the brain, including three-dimensional T1-weighted imaging.

View Article and Find Full Text PDF

Objective: To evaluate the effects of Fanconi anemia (FA) on retinal and choroidal microvasculature using Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA).

Design: Cohort study with age-matched controls.

Subjects And Participants: This study included 11 eyes from 11 patients diagnosed with FA and 12 eyes from 12 age-matched healthy controls.

View Article and Find Full Text PDF

Different Imaging Evaluating Performances Between Glymphatic System and Motor Symptoms and Levodopa Responsiveness of Parkinson Disease.

J Comput Assist Tomogr

January 2025

Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen.

Background And Purpose: Parkinson disease (PD) is defined by its unique motor symptoms, where responsiveness to levodopa (L-DOPA) is fundamental for management. Recent research has highlighted a significant relationship between PD symptoms and glymphatic dysfunction. This study endeavors to clarify the connection between glymphatic system functionality and initial motor symptoms in PD, utilizing imaging biomarkers to determine its predictive capacity for L-DOPA responsiveness (LR).

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) loss in spontaneous intracranial hypotension (SIH) is accompanied by volume shifts between the intracranial compartments. This study investigated tricompartimental and longitudinal volume shifts after closure of a CSF leak.

Methods: Patients with SIH and suitable pre-therapeutic and post-therapeutic imaging for volumetric analysis were identified from our tertiary care center between 2020 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!