Background: Previous attempts to isolate pluripotent cell lines from rat preimplantation embryo in mouse embryonic stem (ES) cell culture conditions (serum and LIF) were unsuccessful, however the resulting cells exhibited the expression of such traditional pluripotency markers as SSEA-1 and alkaline phosphatase. We addressed the question, which kind of cell lineages are produced from rat preimplantation embryo under "classical" mouse ES conditions.
Results: We characterized two cell lines (C5 and B10) which were obtained from rat blastocysts in medium with serum and LIF. In the B10 cell line we found the expression of genes known to be expressed in trophoblast, Cdx-2, cytokeratin-7, and Hand-1. Also, B10 cells invaded the trophectodermal layer upon injection into rat blastocysts. In contrast to mouse Trophoblast Stem (TS) cells proliferation of B10 cells occurred independently of FGF4. Cells of the C5 line expressed traditional markers of extraembryonic-endoderm (XEN) cells, in particular, GATA-4, but also the pluripotency markers SSEA-1 and Oct-4. C5 cell proliferation exhibited dependence on LIF, which is not known to be required by mouse XEN cells.
Conclusions: Our results confirm and extend previous findings about differences between blastocyst-derived cell lines of rat and mice. Our data show, that the B10 cell line represents a population of FGF4-independent rat TS-like cells. C5 cells show features that have recently become known as characteristic of rat XEN cells. Early passages of C5 and B10 cells contained both, TS and XEN cells. We speculate, that mechanisms maintaining self-renewal of cell lineages in rat preimplantation embryo and their in vitro counterparts, including ES, TS and XEN cells are different than in respective mouse lineages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848026 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009794 | PLOS |
Hum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFBMC Biotechnol
November 2024
Department of Chemical Sciences, Faculty of Natural and Applied Science, Oduduwa University Ipetumodu, Ile-Ife, 220211, Nigeria.
Background: The primary indication of infertility is the incapacity to conceive, and in females, the majority of instances of female infertility stem from ovulation disorders. This study evaluated the female fertility-enhancing effects and safety of aqueous leaf extract of Brillantaisia patula (ALEBP) in a cyclophosphamide (CYP) model of sterility in Wistar rats.
Method: Sixty-six female rats randomly allotted to six groups (n = 11) were administered with the appropriate regimen for 21 days and then mated with male rats.
Biology (Basel)
October 2024
Mutant Mouse Resource and Research Center, Columbia, MO 65201, USA.
Assisted reproductive technology has revolutionized our ability to genetically manipulate, maintain and rederive laboratory animals of biomedical importance; manipulate animal reproduction or genetics to boost production of farm animals; and improve human reproductive health. The media for in vitro manipulation and the culture of embryos play a critical role in the development of assisted reproductive technology. In this review, the evolution of culture media supporting embryo development in vitro from selected animal species, laboratory animals (mice and rats) and farm animals (pigs and cattle), will be discussed with a focus on the development of chemically defined media.
View Article and Find Full Text PDFFront Toxicol
September 2024
Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
Toxics
August 2024
Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina.
Perinatal exposure to a glyphosate-based herbicide (GBH) or its active ingredient, glyphosate (Gly), has been demonstrated to increase implantation failure in rats. This study investigates potential mechanisms of action, analyzing uterine preparation towards the receptive state. Pregnant Wistar rats (F0) were treated orally with GBH or Gly (3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!