Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When confronted with multiple covariates and a response variable, analysts sometimes apply a variable-selection algorithm to the covariate-response data to identify a subset of covariates potentially associated with the response, and then wish to make inferences about parameters in a model for the marginal association between the selected covariates and the response. If an independent data set were available, the parameters of interest could be estimated by using standard inference methods to fit the postulated marginal model to the independent data set. However, when applied to the same data set used by the variable selector, standard ("naive") methods can lead to distorted inferences. The authors develop testing and interval estimation methods for parameters reflecting the marginal association between the selected covariates and response variable, based on the same data set used for variable selection. They provide theoretical justification for the proposed methods, present results to guide their implementation, and use simulations to assess and compare their performance to a sample-splitting approach. The methods are illustrated with data from a recent AIDS study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848082 | PMC |
http://dx.doi.org/10.1002/cjs.10039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!