Arylimidamides (AIAs) represent a new class of molecules that exhibit potent antileishmanial activity (50% inhibitory concentration [IC(50)], <1 microM) against both Leishmania donovani axenic amastigotes and intracellular Leishmania, the causative agent for human visceral leishmaniasis (VL). A systematic lead discovery program was employed to characterize in vitro and in vivo antileishmanial activities, pharmacokinetics, mutagenicities, and toxicities of two novel AIAs, DB745 and DB766. They were exceptionally active (IC(50) < or = 0.12 microM) against intracellular L. donovani, Leishmania amazonensis, and Leishmania major and did not exhibit mutagenicity in an Ames screen. DB745 and DB766, given orally, produced a dose-dependent inhibition of liver parasitemia in two efficacy models, L. donovani-infected mice and hamsters. Most notably, DB766 (100 mg/kg of body weight/day for 5 days) reduced liver parasitemia in mice and hamsters by 71% and 89%, respectively. Marked reduction of parasitemia in the spleen (79%) and bone marrow (92%) of hamsters was also observed. Furthermore, these compounds distributed to target tissues (liver and spleen) and had a moderate oral bioavailability (up to 25%), a large volume of distribution, and an elimination half-life ranging from 1 to 2 days in mice. In a repeat-dose toxicity study of mice, there was no indication of liver or kidney toxicity for DB766 from serum chemistries, although mild hepatic cell eosinophilia, hypertrophy, and fatty changes were noted. These results demonstrated that arylimidamides are a promising class of molecules that possess good antileishmanial activity and desirable pharmacokinetics and should be considered for further preclinical development as an oral treatment for VL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876428 | PMC |
http://dx.doi.org/10.1128/AAC.00250-10 | DOI Listing |
Chem Biodivers
October 2018
Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Two novel bis-arylimidamide derivatives with terminal catechol moieties (9a and 10a) and two parent compounds with terminal phenyl groups (DB613 and DB884) were synthesized as dihydrobromide salts (9b and 10b). The designed compounds were hybrid molecules consisting of a catechol functionality embedded in an arylimidamide moiety. All compounds were examined for in vitro antiparasitic activity upon promastigotes of Leishmania major and L.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2018
Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, RJ, Brazil
Five bis-arylimidamides were assayed as anti- agents by , , and approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2017
Laboratory of Cellular Biology.
Arylimidamides (AIAs), previously termed as reversed amidines, present a broad spectrum of activity against intracellular microorganisms. In the present study, three novel AIAs were evaluated in a mouse model of infection, which is the causative agent of Chagas disease. The bis-AIAs DB1957, DB1959 and DB1890 were chosen based on a previous screening of their scaffolds that revealed a very promising trypanocidal effect at nanomolar range against both the bloodstream trypomastigotes (BTs) and the intracellular forms of the parasite.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2016
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
Arylimidamides (AIAs) have been shown to have considerable biological activity against intracellular pathogens, includingTrypanosoma cruzi, which causes Chagas disease. In the present study, the activities of 12 novel bis-AIAs and 2 mono-AIAs against different strains ofT. cruziin vitroandin vivowere analyzed.
View Article and Find Full Text PDFEur J Med Chem
August 2014
Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA. Electronic address:
Fifteen novel bis-arylimidamide derivatives with various 6-membered (7a-c) and 5-membered (7d-o) heterocyclic rings replacing the terminal pyridyl rings of the lead compound DB766{(2,5-bis[2-i-propoxy-4-(2-pyridylimino)aminophenylfuran]}, were prepared and evaluated versus Trypanosoma cruzi, Leishmania amazonensis, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Compound 7a with pyrimidine replacing the pyridine rings showed good activity versus T. cruzi, T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!