Maximum entropy production and plant optimization theories.

Philos Trans R Soc Lond B Biol Sci

Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia.

Published: May 2010

Plant ecologists have proposed a variety of optimization theories to explain the adaptive behaviour and evolution of plants from the perspective of natural selection ('survival of the fittest'). Optimization theories identify some objective function--such as shoot or canopy photosynthesis, or growth rate--which is maximized with respect to one or more plant functional traits. However, the link between these objective functions and individual plant fitness is seldom quantified and there remains some uncertainty about the most appropriate choice of objective function to use. Here, plants are viewed from an alternative thermodynamic perspective, as members of a wider class of non-equilibrium systems for which maximum entropy production (MEP) has been proposed as a common theoretical principle. I show how MEP unifies different plant optimization theories that have been proposed previously on the basis of ad hoc measures of individual fitness--the different objective functions of these theories emerge as examples of entropy production on different spatio-temporal scales. The proposed statistical explanation of MEP, that states of MEP are by far the most probable ones, suggests a new and extended paradigm for biological evolution--'survival of the likeliest'--which applies from biomacromolecules to ecosystems, not just to individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871897PMC
http://dx.doi.org/10.1098/rstb.2009.0293DOI Listing

Publication Analysis

Top Keywords

optimization theories
16
entropy production
12
maximum entropy
8
plant optimization
8
objective functions
8
plant
5
theories
5
production plant
4
optimization
4
theories plant
4

Similar Publications

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.

View Article and Find Full Text PDF

The recent adoption of modern technologies has led to the fourth industrial revolution or Industry 4.0 (I4.0).

View Article and Find Full Text PDF

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Insights into bacterial cellulose for adsorption and sustained-release mechanism of flavors.

Food Chem X

January 2025

Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.

The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!