MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics.

Philos Trans R Soc Lond B Biol Sci

Mathematics Research Institute, University of Exeter, Exeter, UK.

Published: May 2010

A two-box model for equator-to-pole planetary heat transport is extended to include simple atmospheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are calculated analytically in terms of the dimensionless planetary parameters eta (atmospheric thickness), omega (rotation rate) and xi (advective capability). Solutions corresponding to maximum entropy production (MEP) are compared with solutions previously obtained from dynamically unconstrained two-box models. As long as the advective capability xi is sufficiently large, dynamically constrained MEP solutions are identical to dynamically unconstrained MEP solutions. Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate of entropy production in an MEP state is shown to be independent of rotation rate if the advective capability xi is sufficiently large (as for the four examples in the solar system), or if the rotation rate omega is sufficiently small. The model indicates, however, that the dynamical constraint does influence the MEP state when xi is small, which might be the case for some extrasolar planets. Finally, results from the model developed here are compared with previous numerical simulations in which the effect of varying surface drag coefficient on entropy production was calculated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871900PMC
http://dx.doi.org/10.1098/rstb.2009.0297DOI Listing

Publication Analysis

Top Keywords

rotation rate
12
advective capability
12
entropy production
12
atmospheric dynamics
8
surface drag
8
drag coefficient
8
rate advective
8
production mep
8
dynamically unconstrained
8
capability large
8

Similar Publications

Arthroscopic rotator cuff repair (RCR) is a common procedure, yet long-term patient-centered outcome studies remain limited. This study aims to evaluate the outcomes of arthroscopic RCR using a single-row metallic anchor technique over a 12-year follow-up, focusing on patient-reported outcomes and potential risk factors. A monocentric cohort study was conducted on patients who underwent complete arthroscopic RCR with a single-row metallic anchor technique from January 2007 to July 2011.

View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

: Robot-assisted radical prostatectomy (RARP) for the treatment of prostate cancer (PCa) has been standardized over the last 20 years. At our institution, only n = 3 rob arms are used for RARP. In addition, n = 2, 12 mm lap trocars are placed for the bedside assistant symmetrically at the midclavicular lines, which allows for direct pelvic triangulation and greater involvement of the assisting surgeon.

View Article and Find Full Text PDF

Response of Crop Yield and Productivity Contribution Rate to Long-Term Different Fertilization in Northeast of China.

Plants (Basel)

January 2025

Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China.

To reveal the changes in crop yield and contribution rate of black soil productivity under long-term different fertilization conditions in black soil areas and to find the important significance of fertilization for sustainable and stable crop yield, high yield, and improving the contribution rate of black soil nutrients. Based on the long-term experiment of black soil fertility in Harbin, the Ministry of Agriculture and Rural Affairs, under the maize-wheat-soybean rotation system, crop yield, sustainability and stability of yield, the contribution rate of black soil productivity, and natural nutrient supply capacity under 10 fertilization treatments (CK, NP, NK, PK, NPK, M, MNP, MNK, MPK, and MNPK) were analyzed. Results showed that, compared with the treatment of chemical fertilizer, yields of maize, wheat, and soybeans increased under treatment of organic fertilizer combined with chemical fertilizer, among which the yields of maize and wheat changed the most.

View Article and Find Full Text PDF

The kinetics of anthracene hydrogenation was studied using the method of equilibrium kinetic analysis. To determine the diffusion-kinetic characteristics, anthracene hydrogenation was performed at different temperatures (648 K, 673 K, 698 K), at a hydrogen pressure of 3 MPa in the presence of a mixture of pyrite (FeS) and aluminum oxide (AlO) taken at a ratio of 1:1. Chromatographic analysis of anthracene hydrogenation products showed the presence of 9,10-dihydroanthracene (DHA), 1,2,3,4-tetrahydroanthracene (THA), methylnaphthalene (MN), naphthalene (H) and other unidentified compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!