Particulate matter oxidative potential from waste transfer station activity.

Environ Health Perspect

Environmental Research Group, MRC-HPA Centre for Environmental Health, School of Biomedical and Health Sciences, King's College London, London, United Kingdom.

Published: April 2010

Background: Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste.

Objective: Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential.

Methods: PM with a diameter < 10 microm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential.

Results: Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday-Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content.

Conclusions: PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854725PMC
http://dx.doi.org/10.1289/ehp.0901303DOI Listing

Publication Analysis

Top Keywords

oxidative potential
20
mass concentrations
12
wts activity
12
particulate matter
8
waste transfer
8
contribution wts
8
wts emissions
8
pm10 mass
8
trace metal
8
bioavailable iron
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!