Adenosine A2A receptors in both bone marrow cells and non-bone marrow cells contribute to traumatic brain injury.

J Neurochem

The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China.

Published: June 2010

Adenosine A2A receptors (A(2A)Rs) in bone marrow-derived cells (BMDCs) are involved in regulation of inflammation and outcome in several CNS injuries; however their relative contribution to traumatic brain injury (TBI) is unknown. In this study, we created a mouse cortical impact model, and BMDC A(2A)Rs were selectively inactivated in wild-type (WT) mice or reconstituted in global A(2A)R knockout (KO) mice (i.e. inactivation of non-BMDC A(2A)Rs) by bone marrow transplantation. When compared with WT mice, selective inactivation of BMDC A(2A)Rs significantly attenuated the neurological deficits, brain water content and cell apoptosis at 24 h post-TBI as global A(2A)R KO did. However, compared with the A(2A)R KO mice, selective reconstitution of BMDC A(2A)Rs failed to reinstate brain injury, indicating the contribution of the non-BMDC A(2A)R to TBI. Furthermore, the protective outcome by selective inactivation of BMDC A(2A)R or broad inactivation of non-BMDC A(2A)Rs was accompanied with reduced CSF glutamate level and suppression of the inflammatory cytokines interleukin-1, or interleukin-1 and tumor necrosis factor-alpha. These findings demonstrate that inactivation of A(2A)Rs in either BMDCs or non-BMDCs is sufficient to confer the protective effect as global A(2A)R KO against TBI, indicating the A(2A)R involvement in TBI by multiple cellular mechanisms of A(2A)R involvement including inhibition of glutamate release and inflammatory cytokine expressions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2010.06716.xDOI Listing

Publication Analysis

Top Keywords

brain injury
12
bmdc a2ars
12
global a2ar
12
adenosine a2a
8
a2a receptors
8
bone marrow
8
marrow cells
8
traumatic brain
8
a2ars bone
8
a2ar
8

Similar Publications

Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.

View Article and Find Full Text PDF

To what extent sildenafil, a selective inhibitor of the type-5 phosphodiesterase modulates systemic redox status and cerebrovascular function during acute exposure to hypoxia remains unknown. To address this, 12 healthy males (aged 24 ± 3 y) participated in a randomized, placebo-controlled crossover study involving exposure to both normoxia and acute (60 min) hypoxia (Fi = 0.14), followed by oral administration of 50 mg sildenafil and placebo (double-blinded).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Brain connectivity, neural networks, and resilience in aging and neurodegeneration.

Am J Pathol

January 2025

Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!