In this work, we examine the effects of lipopolysaccharide (LPS) treatment on nerve cells of chick embryo used as a universal avian model. We demonstrate that LPS leads to a dramatic cell loss in primary cultures of both glia and neurons, isolated from chick embryos. Toxic effects appear to be mediated by the Toll-like receptor (TLR)-4 complex, expressed in both glial and neuronal cells, since after TLR-4 silencing by RNA interference experiments LPS-induced cytotoxicity was prevented. The role of nitric oxide in LPS-induced cell damage has also been investigated. These results demonstrate, for the first time in avian nerve cells, the surface expression of TLR-4 and its role as a pattern recognition receptor involved in LPS-induced cell responses in a similar manner to that observed in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08923971003739244DOI Listing

Publication Analysis

Top Keywords

nerve cells
8
lps-induced cell
8
identification toll-like
4
toll-like receptor-4
4
receptor-4 avian
4
avian brain
4
brain evolution
4
evolution lipopolysaccharide
4
lipopolysaccharide recognition
4
recognition inflammation-dependent
4

Similar Publications

Improving Recall Accuracy in Sparse Associative Memories That Use Neurogenesis.

Neural Comput

January 2025

Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

The creation of future low-power neuromorphic solutions requires specialist spiking neural network (SNN) algorithms that are optimized for neuromorphic settings. One such algorithmic challenge is the ability to recall learned patterns from their noisy variants. Solutions to this problem may be required to memorize vast numbers of patterns based on limited training data and subsequently recall the patterns in the presence of noise.

View Article and Find Full Text PDF

Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the CNS. Emerging evidence indicates that neurons also orchestrate the microglia mediated immune response through neuro-immune crosstalk perhaps through metabolic signalling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains.

View Article and Find Full Text PDF

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.

View Article and Find Full Text PDF

For the last 38 years, all neuroprotective agents for patients with ischemic stroke have failed in clinical trials. The innate immune system, particularly microglia, is a much-discussed target for neuroprotective agents. Promising results for neuroprotection by inhibition of integrins with drugs such as natalizumab in animal stroke models have not been translated into clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!