Scab caused by the pathogen Venturia inaequalis is considered the most important fungal disease of cultivated apple (Malus x domestica Borkh.). In all, 16 monogenic resistances against scab have been found in different Malus spp. and some of them are currently used in apple breeding for scab-resistant cultivars. However, the self incompatibility and the long generation time of Malus spp. together with the high standards of fruit quality demanded from the fresh market render the breeding of high-quality cultivars in apple a long and expensive task. Therefore, the cloning of disease resistance genes and the use of the cloned genes for the transformation of high-quality apple cultivars could be an approach to solve these drawbacks. We report the construction of a bacterial artificial chromosome (BAC) contig spanning the Rvi15 (Vr2) apple scab resistance locus using two GMAL 2473 BAC libraries. A single BAC clone of the contig was sufficient to span the resistance locus. The BAC clone was completely sequenced, allowing identification of a sequence of 48.6 kb going from the two closest markers (ARGH17 and 77G20RP) bracketing Rvi15 (Vr2). Analysis of the 48.6-kb sequence revealed the presence of three putative genes characterized by a Toll and mammalian interleukin-1 receptor protein nucleotide-binding site leucine-rich repeat structure. All three genes were found to be transcribed.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-23-5-0608DOI Listing

Publication Analysis

Top Keywords

rvi15 vr2
12
resistance locus
12
vr2 apple
8
apple scab
8
scab resistance
8
malus spp
8
bac clone
8
apple
6
genes
5
scab
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!