Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The NH(2)-terminal sequence of the M protein from group A streptococci defines the serotype of the organism and contains epitopes that evoke bactericidal antibodies.
Methods: To identify additional roles for this region of the M protein, we constructed a mutant of M5 group A streptococci expressing an M protein with a deletion of amino acid residues 3-22 (DeltaNH(2)).
Results: M5 streptococci and the DeltaNH(2) mutant were resistant to phagocytosis and were similarly virulent in mice. However, DeltaNH(2) was significantly less hydrophobic, contained less lipoteichoic acid on its surface, and demonstrated reduced adherence to epithelial cells. These differences were abolished when organisms were grown in the presence of protease inhibitors. Treatment with cysteine proteases or with human saliva resulted in the release of M protein from the DeltaNH(2) mutant at a significantly greater rate than observed with the wild-type M5 strain. Compared with the parent strain, the DeltaNH(2) strain also showed a significant reduction in its ability to colonize the upper respiratory mucosa of mice.
Conclusions: The NH(2) terminus of M5 protein has an important role in protecting the surface protein from proteolytic cleavage, thus preserving its function as an anchor for lipoteichoic acid, which is a primary mediator of adherence to epithelial cells and colonization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858045 | PMC |
http://dx.doi.org/10.1086/652005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!