The origin of the cooperative Jahn-Teller distortion and orbital order in LaMnO3 is central to the physics of the manganites. The question is complicated by the simultaneous presence of tetragonal and GdFeO3-type distortions and the strong Hund's rule coupling between e{g} and t{2g} electrons. To clarify the situation we calculate the transition temperature for the Kugel-Khomskii superexchange mechanism by using the local density approximation+dynamical mean-field method, and disentangle the effects of superexchange from those of lattice distortions. We find that superexchange alone would yield T{KK} approximately 650 K. The tetragonal and GdFeO3-type distortions, however, reduce T{KK} to approximately 550 K. Thus electron-phonon coupling is essential to explain the persistence of local Jahn-Teller distortions to greater than or approximately 1150 K and to reproduce the occupied orbital deduced from neutron scattering.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.086402DOI Listing

Publication Analysis

Top Keywords

jahn-teller distortion
8
distortion orbital
8
orbital order
8
order lamno3
8
tetragonal gdfeo3-type
8
gdfeo3-type distortions
8
origin jahn-teller
4
lamno3 origin
4
origin cooperative
4
cooperative jahn-teller
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!