Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe2(As1-xPx){2} as a function of isoelectric substitution (As/P) for 0.41

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.057008DOI Listing

Publication Analysis

Top Keywords

evolution fermi
8
fermi surface
8
surface bafe2as1-xpx{2}
8
bafe2as1-xpx{2} entering
4
entering superconducting
4
superconducting dome
4
dome haas-van
4
haas-van alphen
4
alphen measured
4
measured evolution
4

Similar Publications

Metallic PtC monolayer as a promising hydrogen evolution electrocatalyst.

Phys Chem Chem Phys

January 2025

Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Reasonable design of hydrogen evolution reaction (HER) electrocatalysts with low Pt loading and excellent catalytic performance is a key challenge in finding efficient and cost attractive catalysts. Pt with its unique d-electrons provides new opportunities for the development of HER catalysts when it forms compounds with highly earth-abundant C. Herein, we focused on designing highly efficient catalysts composed of Pt and C elements using first-principles structure search simulations, identifying four stability PtC monolayers.

View Article and Find Full Text PDF

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Single-Atom Suture.

ACS Nano

January 2025

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

In atomically thin two-dimensional (2D) materials, grain boundaries (GBs) are ubiquitous, displaying a profound effect on the electronic structure of the host lattice. The random configuration of atoms within GBs introduces an arbitrary and unpredictable local electronic environment, which may hazard electron transport. Herein, by utilizing the Pt single-atom chains with an ultimate one-dimensional (1D) feature (width of a single atom and length up to tens of nanometers), we realized the suture of the electron pathway at GBs of diversified transition metal dichalcogenides (TMDCs).

View Article and Find Full Text PDF

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Article Synopsis
  • Efficient bifunctional transition metal phosphide catalysts, specifically RuCo co-doped NiP (RuCoNiP), were designed to improve hydrogen production technologies through one-step electrodeposition.
  • The resulting structures, RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH), exhibited enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities and stabilities due to optimized adsorption properties and reduced energy barriers.
  • A dual-electrode system utilizing RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) achieved ultra-low battery voltage and impressive stability, highlighting the potential of this synthetic approach for efficient water-s
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!