The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K_{alpha} radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of approximately 2-4 MeV electrons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.055002DOI Listing

Publication Analysis

Top Keywords

fast-ignition inertial
8
inertial confinement
8
confinement fusion
8
energy deposition
8
main pulse
8
limitation prepulse
4
prepulse level
4
level cone-guided
4
cone-guided fast-ignition
4
fusion viability
4

Similar Publications

High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons.

View Article and Find Full Text PDF

Efficient energy transport throughout conical implosions.

Phys Rev E

March 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The double-cone ignition (DCI) scheme has been proposed as one of the alternative approaches to inertial confinement fusion, based on direct-drive and fast-ignition, in order to reduce the requirement for the driver energy. To evaluate the conical implosion energetics from the laser beams to the plasma flows, a series of experiments have been systematically conducted. The results indicate that 89%-96% of the laser energy was absorbed by the target, with moderate stimulated Raman scatterings.

View Article and Find Full Text PDF

Electromagnetically Induced Transparency in the Strongly Relativistic Regime.

Phys Rev Lett

February 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.

Stable transport of laser beams in highly overdense plasmas is of significance in the fast ignition of inertial confinement fusion, relativistic electron generation, and powerful electromagnetic emission, but hard to realize. Early in 1996, Harris proposed an electromagnetically induced transparency (EIT) mechanism, analogous to the concept in atomic physics, to transport a low-frequency (LF) laser in overdense plasmas aided by a high-frequency pump laser. However, subsequent investigations show that EIT cannot occur in real plasmas with boundaries.

View Article and Find Full Text PDF

The fast ignition paradigm for inertial fusion offers increased gain and tolerance of asymmetry by compressing fuel at low entropy and then quickly igniting a small region. Because this hot spot rapidly disassembles, the ions must be heated to ignition temperature as quickly as possible, but most ignitor designs directly heat electrons. A constant-power ignitor pulse, which is generally assumed, is suboptimal for coupling energy from electrons to ions.

View Article and Find Full Text PDF

Magnetization of high-density plasma with a jet velocity of hundreds of km/s.

Phys Rev E

November 2022

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.

High magnetic fields at the kilotesla scale have been experimentally generated and finding methods to fully embed such fields into high-density plasma is interesting for magnetically assisted a fast ignition scheme of inertial confinement fusion, laboratory astrophysics, and magnetically guided fast electron beam for broad applications. We investigate diffusion and embedment of an external magnetic field inwards a high-density plasma by analysis and simulation. By introducing the magnetic Péclet number, dimensional analysis indicates that the magnetizing process is sensitive to the jet velocity, temperature, and size of the plasma and gives a phenomenological scaling law of the magnetic field embedment time with an arbitrary jet velocity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!