We study the widths of interspecies Feshbach resonances in a mixture of the fermionic quantum gases 6Li and 40K. We develop a model to calculate the width and position of all available Feshbach resonances for a system. Using the model, we select the optimal resonance to study the {6}Li/{40}K mixture. Experimentally, we obtain the asymmetric Fano line shape of the interspecies elastic cross section by measuring the distillation rate of 6Li atoms from a potassium-rich 6Li/{40}K mixture as a function of magnetic field. This provides us with the first experimental determination of the width of a resonance in this mixture, DeltaB=1.5(5) G. Our results offer good perspectives for the observation of universal crossover physics using this mass-imbalanced fermionic mixture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.104.053202 | DOI Listing |
J Phys Chem A
December 2024
Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Quantum Biology Laboratory, Howard University, 2400 6th St. NW, Washington, D.C., 20059, United States of America.
A century ago it was discovered that metabolic processes in living cells emit a spectrum of very low intensity radiation. This was based on observations that radiant energy from proliferating cells can amplify the rate of cell division in other nearby cellular life. Although metabolic radiation is now thoroughly documented in research on ultraweak photon emissions (UPE), the original finding that UPE can enhance mitogenesis remains controversial.
View Article and Find Full Text PDFNat Commun
November 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
Advances in atomic physics have led to the possibility of a coherent transformation between ultracold atoms and molecules including between completely bosonic condensates. Such transformations are enabled by the magneto-association of atoms at a Feshbach resonance which results in a passage through a quantum critical point. In this study, we show that the presence of generic interaction between the constituent atoms and molecules can fundamentally alter the nature of the critical point, change the yield of the reaction and the order of the consequent phase transition.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Shell Global Solutions US, Inc., 3333 Highway 6 South, Houston, TX 77082, United States of America.
Transport through grain boundaries in polycrystals is described from first principles using quantum scattering theory, explicitly including Feshbach resonances to account for intermittently trapped electronic surface states. An effective-matrix is derived then used to calculate the electrical conductivity which exhibits breakdown, a sharp increase at a critical intergrain bias. Under typical conditions where the electron thermal energy,kBT, is much less than the intergrain barrier height,φb, the electrical conductivity has the formσ∼T-1/2e-φb/kBT.
View Article and Find Full Text PDFJ Chem Phys
September 2024
School of Physics, Dalian University of Technology, Dalian 116024, China.
In this paper, we investigate the Feshbach resonances of high partial waves and the influence of spin-spin (S-S) interaction on ultracold scattering processes. Taking the Na23- Rb87 system as an example, we plot the variations of weakly bound state energy and elastic scattering cross section with magnetic field and with collision energy. We find that the number of splittings in high partial wave Feshbach resonances does not strictly conform to the expected l + 1 (l is rotational angular momentum), and the deviation is attributed to the influence of bound states in other channels coupled by S-S interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!