AI Article Synopsis

  • We conducted spectroscopy on exciton polariton condensates in a GaAs microcavity using a stabilized laser, revealing an effective trapping mechanism due to stimulated scattering gain.
  • We found quantized modes, with the lowest mode exhibiting Heisenberg-limited distributions in both real and momentum space.
  • Our experimental results are supported by a model based on the open dissipative Gross-Pitaevskii equation.

Article Abstract

We have performed real and momentum space spectroscopy of exciton polariton condensates in a GaAs-based microcavity under nonresonant excitation with an intensity-stabilized laser. An effective trapping mechanism is revealed, which is due to the stimulated scattering gain inside the finite excitation spot combined with the short lifetime. We observe several quantized modes while the lowest state shows Heisenberg-limited real and momentum space distributions. The experimental findings are qualitatively reproduced by an open dissipative Gross-Pitaevskii equation model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.126403DOI Listing

Publication Analysis

Top Keywords

exciton polariton
8
polariton condensates
8
real momentum
8
momentum space
8
gain-induced trapping
4
trapping microcavity
4
microcavity exciton
4
condensates performed
4
performed real
4
space spectroscopy
4

Similar Publications

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

Optical cavity enhancement of visible light-driven photochemical reaction in the crystalline state.

Chem Commun (Camb)

January 2025

Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Hokkaido 001-0020, Japan.

Photochemical reactions enable the synthesis of energetically unfavorable compounds but often require irradiation with ultraviolet light, which potentially induces side reactions. Here, cavity strong coupling enhances the efficiency of an all-solid state photocyclization in crystals of 2,4-dimethoxy-β-nitrostyrene under irradiation with visible light. The exposure to visible light facilitates photocyclization by the transition to a lower polaritonic state, which is energetically lower than the original transition state.

View Article and Find Full Text PDF

Schlieren texture and topography induced confinement in an organic exciton-polariton laser.

Nat Commun

January 2025

Humboldt Centre for Nano- and Biophotonics, Institute for Light and Matter, Department of Chemistry and Biochemistry, University of Cologne, Köln, Germany.

Non-linearities in organic exciton-polariton microcavities represent an attractive platform for quantum devices. However, progress in this area hinges on the development of material platforms for high-performance polariton lasing, scalable and sustainable fabrication, and ultimately strategies for electrical pumping. Here, we show how introducing Schlieren texturing and a rough intra-cavity topography in a liquid crystalline conjugated polymer enables strong in-plane confinement of polaritons and drastic enhancement of the lasing properties.

View Article and Find Full Text PDF

Polariton lattices as binarized neuromorphic networks.

Light Sci Appl

January 2025

Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!