Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the strong coupling of light and nanoparticle suspensions and their surface tension effect in capillaries. We show experimentally and theoretically that increasing the intensity of a narrow laser beam passing through a capillary far away from the surface results in a significant decrease in the fluid level. The underlying mechanism relies on light-induced redistribution of nanoparticles in the bulk and the surface of the fluid, facilitating continuous optical control over the surface position. The experiments manifest optical control from afar over properties of fluid surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.264503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!