Two pressure-driven streams of two miscible liquids can only mix by diffusion in microfluidic channels because of the low Reynolds number. We present an idea to generate mixing by "chaotic advection" in microscale geometries. That is, we consider using induced-charge electro-osmosis to generate a second flow and then modulate between the pressure-driven and induced-charge flows. By using the combined method consisting of the boundary element method, the Lagrangian particle tracking method, and the random-walk method, we analyze mixing efficiency, mixing time, and mixing length, with the effects of modulation frequency and molecular diffusivity, and compare our proposed mixer with other mixers. By this analysis, we find that chaotic mixing can be produced efficiently in a microfluidic channel by switching between pressure-driven and induced-charge flows in a wide range of Péclet number under the specific condition of Strouhal number. By using our proposed mixer, we can expect to realize efficient chaotic mixing with minimum voltage in an ordinary flow channel with a simple structure without an oblique electric field even at large Péclet number.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.036306 | DOI Listing |
Chem Commun (Camb)
January 2025
Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National University of Singapore, Department of Physics, Singapore 117551.
We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of Connecticut, University of Connecticut, School of Mechanical, Aerospace, and Manufacturing Engineering, Storrs, Connecticut 06269, USA and Institute of Materials Science, Storrs, Connecticut 06269, USA.
Flat lines within a band structure represent constant frequency bands for all momentum values (i.e., they maintain zero group velocity for all wave numbers).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Univ Coimbra, Faculdade de Ciências e Tecnologia da Universidade de Coimbra and CFisUC, Rua Larga, 3004-516 Coimbra, Portugal.
The search for primordial black holes (PBHs) with masses M≪M_{⊙} is motivated by natural early-Universe production mechanisms and that PBHs can be dark matter. For M≲10^{14} kg, the PBH density is constrained by null searches for their expected Hawking emission (HE), the characteristics of which are, however, sensitive to new states beyond the standard model. If there exists a large number of spin-0 particles in nature, PBHs can, through HE, develop and maintain non-negligible spins, modifying the visible HE.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
RIKEN, Condensed Matter Theory Laboratory, CPR, Wako, Saitama 351-0198, Japan.
We show that the ground-state expectation value of twisting operator is a topological order parameter for U(1)- and Z_{N}-symmetric symmetry-protected topological (SPT) phases in one-dimensional "spin" systems-it is quantized in the thermodynamic limit and can be used to identify different SPT phases and to diagnose phase transitions among them. We prove that this (nonlocal) order parameter must take values in Nth roots of unity, and its value can be changed by a generalized lattice translation acting as an N-ality transformation connecting distinct phases. This result also implies the Lieb-Schultz-Mattis (LSM) ingappability for SU(N) spins if we further impose a general translation symmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!