Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A demanding task, for successful fluid dynamic design in many industrial applications, is being able to predict the transition to turbulence location in boundary layer flows. The focus of the present experimental study is on the late stage of transition scenarios where turbulent spots are borne. We report on a natural stabilizing mechanism on the growth rate of turbulent spots, which takes place in a specific bypass transition scenario, and show that there is a palpable history effect of the origin of the turbulent spot on the streamwise evolution. Furthermore, experimental evidence on Reynolds number effects on the spot evolution in boundary layers is put forward. This has been made possible by setting up an idealized experiment, which usually only is considered as a schoolbook example.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.035301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!