Effective zero-thickness model for a conductive membrane driven by an electric field.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI, 10 rue Vauquelin, F-75231 Paris, France.

Published: March 2010

The behavior of a conductive membrane in a static (dc) electric field is investigated theoretically. An effective zero-thickness model is constructed based on a Robin-type boundary condition for the electric potential at the membrane, originally developed for electrochemical systems. Within such a framework, corrections to the elastic moduli of the membrane are obtained, which arise from charge accumulation in the Debye layers due to capacitive effects and electric currents through the membrane and can lead to an undulation instability of the membrane. The fluid flow surrounding the membrane is also calculated, which clarifies issues regarding these flows sharing many similarities with flows produced by induced charge electro-osmosis (ICEO). Nonequilibrium steady states of the membrane and of the fluid can be effectively described by this method. It is both simpler, due to the zero thickness approximation which is widely used in the literature on fluid membranes, and more general than previous approaches. The predictions of this model are compared to recent experiments on supported membranes in an electric field.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.81.031912DOI Listing

Publication Analysis

Top Keywords

electric field
12
effective zero-thickness
8
zero-thickness model
8
membrane
8
conductive membrane
8
membrane fluid
8
electric
5
model conductive
4
membrane driven
4
driven electric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!