Model for the growth of electrodeposited ferromagnetic aggregates under an in-plane magnetic field.

Phys Rev E Stat Nonlin Soft Matter Phys

CBPF-MCT, Rua Dr Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ, Brazil.

Published: February 2010

The quasi-two-dimensional deposition of ferromagnetic materials by electrochemical process under the influence of a magnetic field applied in the plane of the growth leads to a surprising symmetry breaking in the dendritic structures found. The reasons for these features are still not completely understood. The original dense circular envelope becomes rectangular, as well as the sparse figures have their shapes elongated. This paper reports the results of a diffusion-limited aggregation (DLA) -like simulation. The model proposed here, a modification of the original DLA model, can deal with ferromagnetic particles under the influence of an electric field and the dipolar interactions between particles, submitted to an applied magnetic field in the plane of growth of such structures. The results were produced varying the applied magnetic field and the magnetic moment of the particles and show that the balance between these interactions is an important mechanisms that can be responsible for the changes in shape of the aggregates observed in the experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.81.021403DOI Listing

Publication Analysis

Top Keywords

magnetic field
16
plane growth
8
applied magnetic
8
magnetic
5
field
5
model growth
4
growth electrodeposited
4
electrodeposited ferromagnetic
4
ferromagnetic aggregates
4
aggregates in-plane
4

Similar Publications

In this study, the AlFeO@n-Pr@Et-SOH heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFeO@n-Pr@Et-SOH nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFeO@n-Pr@Et-SOH materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides.

View Article and Find Full Text PDF

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

High-temperature field-free superconducting diode effect in high-T cuprates.

Nat Commun

January 2025

International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.

The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.

View Article and Find Full Text PDF

Objective: To evaluate the relationship between infarct pattern, inferred stroke mechanism and risk of recurrence in patients with ischaemic stroke. The question is clinically relevant to optimise secondary stroke prevention investigations and treatment.

Design: We conducted a retrospective analysis of the dabigatran treatment of acute stroke II (DATAS II) trial (ClinicalTrials.

View Article and Find Full Text PDF

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!