We develop a framework for the multiple scattering of a polarized wave. We consider particles with spin propagating in a medium filled with scatterers. We write the amplitudes of each spin eigenstate in a local mobile frame. One of the axes is in the direction of propagation of the particle. We use this representation to define a directional Green's operator of the homogeneous medium and also to write the spin-dependent scattering amplitudes. We show that this representation reveals a Berry phase. We establish a generalized Green-Dyson equation for the multiple-scattering problem in this framework. We show that the generalized Green-Dyson equation can be solved by linear algebra if one uses a representation of the rotations based on Wigner D matrices. The properties of light scattering are retrieved if we use spin 1 particles. Our theory allows to take into account several kinds of anisotropies such as circular or linear dichroism and birefringence, Faraday effects, and Mie scattering within the same formalism. Several anisotropies can be present at the same time.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.056605DOI Listing

Publication Analysis

Top Keywords

framework multiple
8
multiple scattering
8
scattering polarized
8
berry phase
8
generalized green-dyson
8
green-dyson equation
8
scattering
5
general framework
4
polarized waves
4
waves including
4

Similar Publications

Developing Adverse Outcome Pathways to support radioecological risk assessment: Challenges and insights.

Environ Toxicol Chem

January 2025

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Laboratoire d'Ecologie et d'Ecotoxicologie des Radionucléides, Cadarache, 13115 France Saint Paul-Lez-Durance.

Environmental pollution associated with long term effects, especially in the case of ionizing radiation, poses significant risks to wildlife, necessitating a more nuanced approach to Ecological Risk Assessment (ERA). In radioecology, current methods, as outlined by the International Commission on Radiological Protection (ICRP), focus primarily on exposure and individual/population-level effects, often both suffering a lack of ecological realism due to the nature of data used, and, sidelining a big amount of critical non-individual effects such as sub-individual one like genotoxicity. This review aims to address these gaps by suggesting the integration of New Approach Methods (NAMs) and the Adverse Outcome Pathway (AOP) framework in the field of radioecology.

View Article and Find Full Text PDF

The ICH E9 addendum on estimands in clinical trials provides a framework for precisely defining the treatment effect that is to be estimated, but says little about estimation methods. Here, we report analyses of a clinical trial in type 2 diabetes, targeting the effects of randomized treatment, handling rescue treatment and discontinuation of randomized treatment using the so-called hypothetical strategy. We show how this can be estimated using mixed models for repeated measures, multiple imputation, inverse probability of treatment weighting, G-formula, and G-estimation.

View Article and Find Full Text PDF

Cardiac organ chip: advances in construction and application.

Biomater Transl

November 2024

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong Province, China.

Cardiovascular diseases are a leading cause of death worldwide, and effective treatment for cardiac disease has been a research focal point. Although the development of new drugs and strategies has never ceased, the existing drug development process relies primarily on rodent models such as mice, which have significant shortcomings in predicting human responses. Therefore, human-based in vitro cardiac tissue models are considered to simulate physiological and functional characteristics more effectively, advancing disease treatment and drug development.

View Article and Find Full Text PDF

4D live tracing reveals distinct movement trajectories of meiotic chromosomes.

Life Med

December 2024

Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.

Proper chromosome alignment at the spindle equator is a prerequisite for accurate chromosome segregation during cell division. However, the chromosome movement trajectories prior to alignment remain elusive. Here, we established a 4D imaging analysis framework to visualize chromosome dynamics and develop a deep-learning model for chromosome movement trajectory classification.

View Article and Find Full Text PDF

Background: Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!