Characterization of two distinct, simultaneous hot electron beams in intense laser-solid interactions.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, University of Texas, Austin, Texas 78712-0263, USA.

Published: November 2009

The transport of energetic electron beams generated from aluminum foils irradiated by ultraintense laser pulses has been studied by imaging coherent transition radiation from the rear side of the target. Two distinct beams of MeV electrons are emitted from the target rear side at the same time. This measurement indicates that two different mechanisms, namely resonance absorption and jxB heating, accelerate the electrons at the targets front side and drive them to different directions, with different temperatures. This interpretation is consistent with 3D-particle-in-cell simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.055402DOI Listing

Publication Analysis

Top Keywords

electron beams
8
rear side
8
characterization distinct
4
distinct simultaneous
4
simultaneous hot
4
hot electron
4
beams intense
4
intense laser-solid
4
laser-solid interactions
4
interactions transport
4

Similar Publications

Attix free-air chamber correction factors computed using EGSnrc.

Med Phys

January 2025

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Background: A cylindrical free-air chamber, the Attix FAC, is used for absolute air-kerma measurements of low-energy photon beams at the University of Wisconsin Medical Radiation Research Center. Correction factors for air-kerma measurements of specific beams were determined in the 1990s. In order to measure air-kerma rates of beams in development, new correction factors must be computed.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

The ruins of the Imperial City of the Minyue Kingdom were an important site of the Minyue Kingdom during the Han Dynasty. Characteristic bronze arrowheads unearthed from the East Gate, with their exquisite craftsmanship, provide important physical evidence for studying ancient bronze casting technology and the military activities of that time. However, there is still a lack of systematic research on the alloy composition, casting process, and chemical stability of these arrowheads in long-term burial environments.

View Article and Find Full Text PDF

Very High-Energy Electron Therapy Toward Clinical Implementation.

Cancers (Basel)

January 2025

Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.

The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.

View Article and Find Full Text PDF

First-principles study of structural, elastic, electronic, transport properties, and dielectric breakdown of CsTe photocathode.

Sci Rep

January 2025

Accelerator Operations and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.

The pursuit to operate photocathodes at high accelerating gradients to increase brightness of electron beams is gaining interests within the accelerator community, particularly for applications such as free electron lasers (FEL) and compact accelerators. Cesium telluride (CsTe) is a widely used photocathode material and it is presumed to offer resilience to higher gradients because of its wider band gap compared to other semiconductors. Despite its advantages, crucial material properties of CsTe remain largely unknown both in theory and experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!