A blind identification method of transfer functions in feedback systems is introduced for examination of dynamical activities of cortices by magnetoencephalography study. Somatosensory activities are examined in 5 Hz periodical median nerve stimulus. In the present paper, we will try two careful preprocessing procedures for the identification method to obtain impulse responses between primary somatosensory cortices. Time series data of the somatosensory evoked field are obtained by using a blind source separation of the T/k type (fractional) decorrelation method. Time series data of current dipoles of primary somatosensory cortices are transformed from the time series data of the somatosensory evoked field by the inverse problem. Fluctuations of current dipoles of them are obtained after elimination of deterministic periodical evoked waveforms. An identification method based on feedback system theory is used for estimation of transfer functions in a feedback model from obtained fluctuations of currents dipoles of primary somatosensory cortices. Dynamical activities between them are presented by Bode diagrams of transfer functions and their impulse responses: the time delay of about 30 ms via corpus callosum is found in the impulse response of identified transfer function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.80.051906 | DOI Listing |
Cereb Cortex
January 2025
Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan.
J Voice
January 2025
School of Behavioral and Brain Sciences, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, University of Texas at Dallas, Richardson, TX; Department of Otolaryngology - Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Electronic address:
Introduction: Patients with primary muscle tension dysphonia (pMTD) commonly report symptoms of vocal effort, fatigue, discomfort, odynophonia, and aberrant vocal quality (eg, vocal strain, hoarseness). However, voice symptoms most salient to pMTD have not been identified. Furthermore, how standard vocal fatigue and vocal tract discomfort indices that capture persistent symptoms-like the Vocal Fatigue Index (VFI) and Vocal Tract Discomfort Scale (VTDS)-relate to acute symptoms experienced at the time of the voice evaluation is unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand.
Fibromyalgia is a chronic pain condition contributing to significant disability worldwide. Neuroimaging studies identify abnormal effective connectivity between cortical areas responsible for descending pain modulation (pregenual anterior cingulate cortex, pgACC) and sensory components of pain experience (primary somatosensory cortex, S1). Neurofeedback, a brain-computer interface technique, can normalise dysfunctional brain activity, thereby improving pain and function.
View Article and Find Full Text PDFFront Neuroanat
December 2024
Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Nissl histology underpins our understanding of brain anatomy and architecture. Despite its importance, no high-resolution datasets are currently available in the literature for 14-day-old rats. To remedy this issue and demonstrate the utility of such a dataset, we have acquired over 2000 high-resolution images (0.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Neurology, UCSF, San Francisco, United States of America.
NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!