Simplifying pyridoxal: practical methods for amino acid dynamic kinetic resolution.

Org Lett

Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, USA.

Published: May 2010

Metal complexes of picolinaldehyde are identified as low-cost and environmentally benign catalysts, providing high reaction rates and turnovers for the racemization of amino acids. These pyridoxal surrogates demonstrate activity toward a variety of amino acid esters. Applications to chemoenzymatic dynamic kinetic resolutions provide access to amino acids in high yields and with excellent enantioselectivities, demonstrating their compatibility with protease-mediated transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol100319bDOI Listing

Publication Analysis

Top Keywords

amino acid
8
dynamic kinetic
8
amino acids
8
simplifying pyridoxal
4
pyridoxal practical
4
practical methods
4
amino
4
methods amino
4
acid dynamic
4
kinetic resolution
4

Similar Publications

Objective: This study aims to describe the outcomes of COVID-19 patients treated with molnupiravir and to explore the associations with various risk factors.

Methods: We conducted a single-centre, descriptive, retrospective study without a comparison group.

Results: Out of 141 patients, 70 (49.

View Article and Find Full Text PDF

Wall shear stress modulates metabolic pathways in endothelial cells.

Metabolomics

January 2025

Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.

View Article and Find Full Text PDF

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

Effects of Different Ionic Liquids on Microbial Growth and Microbial Communities' Structure of Soil.

Bull Environ Contam Toxicol

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.

Ionic liquids (ILs) are widely used "green solvent" as they have a low vapor pressure and can replace volatile solvents in industry. However, ILs are difficult to biodegrade and are potentially harmful to the environment. This study, herein, investigated the toxicity of three imidazole ILs ([CMIM]Cl, [CMIM]Br, and [CDMIM]Br) towards soil microorganisms.

View Article and Find Full Text PDF

nT4X and nT4M: Novel Time Non-reversible Mixture Amino Acid Substitution Models.

J Mol Evol

January 2025

University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, 10000, Hanoi, Vietnam.

One of the most important and difficult challenges in the research of molecular evolution is modeling the process of amino acid substitutions. Although single-matrix models, such as the LG model, are popular, their capability to properly capture the heterogeneity of the substitution process across sites is still questioned. Several mixture models with multiple matrices have been introduced and shown to offer advantages over single-matrix models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!