We demonstrate the synthesis of near-IR-emitting zinc blende CdTe/CdS tetrahedral-shaped nanocrystals with a magic-sized (approximately 0.8 nm radius) CdTe core and a thick CdS shell (up to 5 nm). These high-quality water-soluble nanocrystals were obtained by a simple but reliable aqueous method at low temperature. During the growth of the shell over the magic core, the core/shell nanocrystals change from type I to type II, as revealed by their enormous photoluminescence (PL) emission peak shift (from 480 to 820 nm) and significant increase in PL lifetime (from approximately 1 to approximately 245 ns). These thick-shell nanocrystals have a high PL quantum yield, high photostability, compact size (hydrodynamic diameter less than 11.0 nm), and reduced blinking behavior. The magic-core/thick-shell nanocrystals may represent an important step toward the synthesis and application of next-generation colloidal nanocrystals from solar cell conversion to intracellular imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja101476bDOI Listing

Publication Analysis

Top Keywords

zinc blende
8
blende cdte/cds
8
tetrahedral-shaped nanocrystals
8
nanocrystals
7
aqueous synthesis
4
synthesis zinc
4
cdte/cds magic-core/thick-shell
4
magic-core/thick-shell tetrahedral-shaped
4
nanocrystals emission
4
emission tunable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!