CX3CR1, an important chemokine receptor in dendritic cells (DCs), is linked to the progression of atherosclerotic plaques. However, the mechanism(s) determining the role of CX3CR1 in atherosclerosis have not been clearly elucidated. In this study, we developed DCs from monocytes of Sprague-Dawley (SD) rats in the presence of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and recombinant human interleukin-4 (IL-4). The presence of recombinant human TNF-α and LPS forced the cells to mature. When compared to immature DCs, flow cytometry (FACS) analysis revealed that mature DCs display a sustained increase in the levels of CD11c, CD86, and CD80 expression. The expression of Fractalkine (FKN) in endothelial cells (ECs) contributes to the maturation of DCs and expression of CX3CR1. We revealed that mRNA expression levels of CX3CR1 in mature DCs are significantly higher than those of immature DCs (P<0.001). Transfection of DCs with siRNA specific for the CX3CR1 gene resulted in potent suppression of gene expression and inhibition of interactions between DCs and ECs. Based on these data, we hypothesized that CX3CR1 contributes to the DC-EC interaction. CX3CR1 may serve as a new target molecule for increasing therapeutic interactions in atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-010-0131-1 | DOI Listing |
J Int AIDS Soc
February 2025
AP-HP, Hôpital Bichat Claude Bernard, Service de Virologie, INSERM, IAME, Paris, France.
Introduction: Molecular surveillance is an important tool for detecting chains of transmission and controlling the HIV epidemic. This can also improve our knowledge of molecular and epidemiological factors for the optimization of prevention. Our objective was to illustrate this by studying the molecular and epidemiological evolution of the cluster including the new circulating recombinant form (CRF) 94_cpx of HIV-1, detected in 2017 and targeted by preventive actions in 2018.
View Article and Find Full Text PDFCommun Biol
January 2025
Large Molecules Research, Sanofi, Cambridge, MA, USA.
Antibodies, essential components of adaptive immunity, derive their remarkable diversity primarily from V(D)J gene rearrangements, particularly within the heavy chain complementarity-determining region 3 (CDR-H3) where D genes play a major role. Traditionally, D genes were thought to recombine only in the forward direction, despite having identical recombination signal sequences (12 base pair spacers) at both ends. This observation led us to question whether these symmetrical sequences might enable bidirectional recombination.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany.
In vitro and ex vivo studies on drug metabolism and stability are vital for drug development and pre-clinical safety assessment. Traditional in vitro models, such as liver enzyme (S9) fractions and microsomes, often fail to account for individual variability. Personalized models, including 3D cell models and organoids, offer promising alternatives but may not fully replicate physiological processes, especially for Cytochrome P450 (CYP) families involved in extrahepatic metabolism.
View Article and Find Full Text PDFVaccine
January 2025
State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China. Electronic address:
Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ALRTI) in infants, the elderly, and immunocompromised individuals. The recent approval of recombinant protein-based hRSV vaccines represents significant progress in combating hRSV. However, these vaccines utilized optimized preF ectodomain attached with an exogenous trimeric motif, which may induce immunological complications.
View Article and Find Full Text PDFCancer Genet
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Marion, USA. Electronic address:
DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!