Adenosine via an adenosine A(1) receptor (A(1)R) is a negative feedback inhibitor of adrenergic stimulation in the heart, protecting it from toxic effects of overstimulation. Stimulation of the A(1)R results in the activation of G(i) protein, release of free Gbetagamma-subunits, and activation/translocation of PKC-epsilon to the receptor for activated C kinase 2 protein at the Z-line of the cardiomyocyte sarcomere. Using an anti-Gbetagamma peptide, we investigated the role of these subunits in the A(1)R stimulation of phospholipase C (PLC), with the premise that the resulting diacylglycerol provides for the activation of PKC-epsilon. Inositol 1,4,5-triphosphate release was an index of PLC activity. Chlorocyclopentyl adenosine (CCPA), an A(1)R agonist, increased inositol 1,4,5-triphosphate production by 273% in mouse heart homogenates, an effect absent in A(1)R knockout hearts and inhibited by anti-Gbetagamma peptide. In a second study, p38 MAPK and heat shock protein 27 (HSP27), found by others to be associated with the loss of myocardial contractile function, were postulated to play a role in the actions of A(1)R. Isoproterenol, a beta-adrenergic receptor agonist, increased the Ca(2+) transient and sarcomere shortening magnitudes by 36 and 49%, respectively. In the rat cardiomyocyte, CCPA significantly reduced these increases, an action blocked by the p38 MAPK inhibitor SB-203580. While CCPA significantly increased the phosphorylation of HSP27, this action was inhibited by isoproterenol. These data indicate that the activation of PKC-epsilon by A(1)R results from the activation of PLC via free Gbetagamma-subunits released upon A(1)R-induced dissociation of G(i)alphabetagamma. Attenuation of beta-adrenergic-induced contractile function by A(1)R may involve the activation of p38 MAPK, but not HSP27.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886631PMC
http://dx.doi.org/10.1152/ajpheart.01028.2009DOI Listing

Publication Analysis

Top Keywords

p38 mapk
16
mapk hsp27
8
a1r
8
a1r activation
8
free gbetagamma-subunits
8
anti-gbetagamma peptide
8
activation pkc-epsilon
8
inositol 145-triphosphate
8
agonist increased
8
contractile function
8

Similar Publications

Arsenite-induced liver apoptosis via oxidative stress and the MAPK signaling pathway in marine medaka.

Aquat Toxicol

December 2024

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China. Electronic address:

Arsenic (As) is widely recognized for its hazards to aquatic organisms; however, its toxicological impacts on apoptosis in marine fish remain inadequately explored. This study investigated the effects of in vivo dietary exposure to 50 or 500 mg/kg AsIII (as NaAsO) over 28 days in marine medaka, alongside in vitro exposure to 50-750 μg/L AsIII for 48 h in a hepatic cell line derived from marine medaka, to elucidate the toxicity and underlying molecular mechanisms. In vivo, As significantly accumulated in liver tissue (1.

View Article and Find Full Text PDF

Drugs repurposing in the experimental models of Alzheimer's disease.

Inflammopharmacology

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.

The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.

View Article and Find Full Text PDF

Background: Mitogen activated protein kinase (MAPK) signaling is a critical regulator of microglial phenotype, including phagocytic function, cytokine expression, and motility, among others. Importantly, both canonical and non-canonical MAPK signaling is directly activated by RTKs, including Interestingly, CSF1R, is activated by two agonists, CSF1 and IL-34, which have been shown to activate the receptor in different ways that can lead to However, little is known about how the affect microglial MAPK signaling, and whether their effects are dependent on disease state/Aβ exposure. In this study, we hypothesized that IL-34 and CSF-1 elicit distinct patterns of MAPK signaling activation in microglia and MAPK activation would be dependent on whether the cells were exposed to Aβ.

View Article and Find Full Text PDF

Background: Pyroptosis is closely associated with chemotherapeutic drugs and immune response. Here, we investigated whether oxaliplatin, a key drug in FOLFOX-hepatic artery infusion chemotherapy (FOLFOX-HAIC), induces pyroptosis in hepatoma cells and enhances antitumor immunity after tumor cell death.

Methods: Hepatoma cells were treated with oxaliplatin.

View Article and Find Full Text PDF

Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!