A collection of 130 new plant cell wall glycan-directed monoclonal antibodies (mAbs) was generated with the aim of facilitating in-depth analysis of cell wall glycans. An enzyme-linked immunosorbent assay-based screen against a diverse panel of 54 plant polysaccharides was used to characterize the binding patterns of these new mAbs, together with 50 other previously generated mAbs, against plant cell wall glycans. Hierarchical clustering analysis was used to group these mAbs based on the polysaccharide recognition patterns observed. The mAb groupings in the resulting cladogram were further verified by immunolocalization studies in Arabidopsis (Arabidopsis thaliana) stems. The mAbs could be resolved into 19 clades of antibodies that recognize distinct epitopes present on all major classes of plant cell wall glycans, including arabinogalactans (both protein- and polysaccharide-linked), pectins (homogalacturonan, rhamnogalacturonan I), xyloglucans, xylans, mannans, and glucans. In most cases, multiple subclades of antibodies were observed to bind to each glycan class, suggesting that the mAbs in these subgroups recognize distinct epitopes present on the cell wall glycans. The epitopes recognized by many of the mAbs in the toolkit, particularly those recognizing arabinose- and/or galactose-containing structures, are present on more than one glycan class, consistent with the known structural diversity and complexity of plant cell wall glycans. Thus, these cell wall glycan-directed mAbs should be viewed and utilized as epitope-specific, rather than polymer-specific, probes. The current world-wide toolkit of approximately 180 glycan-directed antibodies from various laboratories provides a large and diverse set of probes for studies of plant cell wall structure, function, dynamics, and biosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879786 | PMC |
http://dx.doi.org/10.1104/pp.109.151985 | DOI Listing |
Nature
January 2025
German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany.
Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China. Electronic address:
Cell wall greatly affects Al tolerance of plants, but the precise mechanisms by which the cell wall modulating Al tolerance remains largely unknown. In the present study, Al tolerant alfalfa varieties (WL525 and WL903) accumulated less Al in root tips, cell wall and pectins, averagely decreased by 23.8 %, 41.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Arts and Sciences, Bingol University, 12000 Bingol, Turkiye. Electronic address:
Recently, "Bacillus atrophaeus", which has a cell wall structure consisting of peptidoglycan layers, has attracted the attention of researchers due to its different usage areas. In particular, research focuses on the technology of obtaining bio‑hydrogen with various techniques. This research involves, for the first time, the use of the Bacillus atrophaeus bacteria as a bio-supporting material for monodisperse copper nanoparticles (CuNPs@Bacillus atrophaeus) and the manufacture of hydrogen through catalytic NaBH-methanolysis (SB-methanolysis) in the presence of the resulting nanoparticles.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Crown rot caused by Fusarium proliferatum is a severe postharvest disease of banana fruit. The N-methyladenosine (mA) modification is the most common type of RNA modification and regulates gene expression in eukaryotes. Here, we analyzed transcriptome-wide changes in mA methylation to investigate post-transcriptional regulation mechanisms of growth and fumonisin biosynthesis of F.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA; Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA. Electronic address:
Vancomycin intermediate-resistant Staphylococcus aureus (VISA) is a pathogen of concern. VraS, a histidine kinase, facilitates the VISA phenotype. Here, we reveal a benzoxazolyl urea (chemical 1) that directly inhibits VraS and enhances vancomycin to below the clinical breakpoint against an archetypal VISA strain, Mu50.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!