Extended N-sulfated domains reside at the nonreducing end of heparan sulfate chains.

J Biol Chem

Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

Published: June 2010

Heparan sulfate (HS) serves as a cell-surface co-receptor for growth factors, morphogens, and chemokines. These HS and protein binding events depend on the fine structure and distribution of domains along an HS chain. A given domain can vary in terms of uronic acid epimer, N- and O-sulfate, and N-acetate content. The most highly sulfated regions of HS chains, N-sulfated (NS) domains, play prominent roles in HS and protein binding. We have analyzed HS oligosaccharides from various mammalian sources and provide evidence that NS domains residing at the nonreducing end (NRE) are, on average, longer than those residing in the internal regions of the chain. Additionally, they are more highly sulfated than their internal counterparts. These features are independent of the sulfation pattern of the bulk HS chains. From disaccharide analysis, it is clear that NS domains do not always occupy HS NREs. However, when they do, they tend to terminate in a subset of N-sulfated disaccharides. Our observations are consistent with a significant role of NRE NS domains in HS-growth factor interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881759PMC
http://dx.doi.org/10.1074/jbc.M110.101592DOI Listing

Publication Analysis

Top Keywords

n-sulfated domains
8
heparan sulfate
8
protein binding
8
highly sulfated
8
domains
6
extended n-sulfated
4
domains reside
4
reside nonreducing
4
nonreducing heparan
4
sulfate chains
4

Similar Publications

Heparan sulfate (HS) is a non-immunogenic antigen, and developing antibodies against specific sulfated patterns in HS poses significant challenges. Herein, we employed an innovative immunization strategy that exploits the molecular mimicry of HS to generate antibodies against HS sequences. Mice were immunized with synthetic sulfated oligo-l-idose () that mimics optimum 67% of the conserved structure of HS ligands.

View Article and Find Full Text PDF

Discovery of a class of glycosaminoglycan lyases with ultrabroad substrate spectrum and their substrate structure preferences.

J Biol Chem

July 2024

National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China. Electronic address:

Glycosaminoglycan (GAG) lyases are often strictly substrate specific, and it is especially difficult to simultaneously degrade GAGs with different types of glycosidic bonds. Herein, we found a new class of GAG lyases (GAGases) from different bacteria. These GAGases belong to polysaccharide lyase 35 family and share quite low homology with the identified GAG lyases.

View Article and Find Full Text PDF

Objectives: Heparosan is used as the starting polysaccharide sulfated using sulfotransferase to generate fully elaborate heparin, a widely used clinical drug. However, the preparation of heparosan and enzymes was considered tedious since such material must be prepared in separate fermentation batches. In this study, a commonly admitted probiotic, Escherichia coli strain Nissle 1917 (EcN), was engineered to intracellularly express sulfotransferases and, simultaneously, secreting heparosan into the culture medium.

View Article and Find Full Text PDF

Unraveling the Structural Landscape of Chitosan-Based Heparan Sulfate Mimics Binding to Growth Factors: Deciphering Structural Determinants for Optimal Activity.

ACS Appl Mater Interfaces

June 2020

Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.

Chitosan sulfates have demonstrated the ability to mimic heparan sulfate (HS) function. In this context, it is crucial to understand how the specific structural properties of HS domains determine their functionalities and biological activities. In this study, several HS-mimicking chitosans have been prepared to mimic the structure of HS domains that have proved to be functionally significant in cell processes.

View Article and Find Full Text PDF

Building blocks characterization is a significant approach for understanding the molecular structure of heparin and its derivatives. Nitrous acid (HONO) depolymerization of heparin generates oligosaccharides that maintain the epimerization conformation on C5 of the uronic acids, reflecting the authentic structure of the parental chain. HONO treatment at pH 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!