4-(N)-1,1',2-trisnor-squalenoyldideoxycytidine monophosphate (SQddC-MP) and 4-(N)-1,1',2-trisnor-squalenoylgemcitabine monophosphate (SQdFdC-MP) were synthesized using phosphoramidite chemistry. These amphiphilic molecules self-assembled to about hundred nanometers size nanoassemblies in aqueous medium. Nanoassemblies of SQddC-MP displayed significant anti-HIV activity whereas SQdFdC-MP nanoassemblies displayed promising anticancer activity on leukemia cells. These results suggested that squalene conjugate of negatively charged nucleotide analogues efficiently penetrated within cells. Thus, we propose a new prodrug strategy for improved delivery of nucleoside analogues to ameliorate their biological efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.03.070DOI Listing

Publication Analysis

Top Keywords

prodrug strategy
8
nucleotide analogues
8
squalenoyl nucleoside
4
nucleoside monophosphate
4
nanoassemblies
4
monophosphate nanoassemblies
4
nanoassemblies prodrug
4
strategy delivery
4
delivery nucleotide
4
analogues 4-n-11'2-trisnor-squalenoyldideoxycytidine
4

Similar Publications

Self-assembled doxorubicin prodrug riding on the albumin express train enable tumor targeting and bio-activation.

J Colloid Interface Sci

January 2025

Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China. Electronic address:

Doxorubicin (DOX) is a vital anthracycline chemotherapeutic drug, yet presenting significant challenges due to its severe cardiotoxicity. While Doxil enhances the pharmacokinetics and reduces the cardiotoxicity of DOX solution (DOX sol), it shows limitations of low drug loading capacity and inadequate cellular uptake. To overcome these issues, this study developed a novel disulfide bond-linked DOX-maleimide prodrug (DSSM).

View Article and Find Full Text PDF

Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm).

View Article and Find Full Text PDF

Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Nat Chem Biol

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.

View Article and Find Full Text PDF

Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. Most existing TCIs are however cysteine- or lysine-reactive, thus severely limiting their potential applications. New types of TCIs capable of covalently targeting other nucleophilic amino acids that are readily available in proteins are urgently needed.

View Article and Find Full Text PDF

Phospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!