Kinetoplast DNA (kDNA) of trypanosomatid protozoa consists of an unusual arrangement of two types of circular molecules catenated into a single network: (1) a few maxicircles that encode various mitochondrial enzyme subunits and rRNA in a cryptic pattern and (2) thousands of minicircles that encode guide RNAs (gRNAs). kDNA is associated with proteins, known as kinetoplast-associated proteins (KAPs), which condense the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasite that displays different kDNA condensation patterns during its complex morphogenetic development. We cloned the T. cruzi gene encoding TcKAP3 (kinetoplast-associated protein 3). TcKAP3 is a single-copy gene that is transcribed into a 1.8-kb mRNA molecule and expressed in all stages of the parasite. Mouse antiserum raised against recombinant TcKPA3 recognized a 21.8kDa protein, which was found, by indirect immunofluorescence and immunoelectron microscopy, to be associated with the T. cruzi kinetoplast. Several features of TcKAP3, such as its small size, basic nature and similarity with KAP3 from the insect trypanosomatid Crithidia fasciculata, are consistent with a role in DNA charge neutralization and condensation. This suggests that this protein is involved in organizing the kDNA network. Gene deletion was used to investigate TcKAP3 function. Here we investigated the T. cruzi KAP3 null mutant, analyzing its fitness during proliferation, differentiation and infectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2010.03.014DOI Listing

Publication Analysis

Top Keywords

gene encoding
8
kinetoplast-associated protein
8
trypanosoma cruzi
8
cruzi kinetoplast
8
proliferation differentiation
8
kdna network
8
cruzi
5
kdna
5
knockout gene
4
encoding kinetoplast-associated
4

Similar Publications

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.

PLoS Comput Biol

January 2025

Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America.

Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources.

View Article and Find Full Text PDF

The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.

View Article and Find Full Text PDF

Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.

View Article and Find Full Text PDF

A Susceptible Cell-Selective Delivery (SCSD) of mRNA-Encoded Cas13d Against Influenza Infection.

Adv Sci (Weinh)

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.

To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!