The immediate early response gene, Early Growth Response 1 (EGR-1) has emerged as a central regulator of early inflammatory and immune processes by rapidly regulating the transcription of a wide array of downstream effector genes. Neutrophils, which are among the first circulating leukocytes to respond to inflammatory signals, exhibit a broad set of transcriptional changes immediately upon exposure to inflammatory and pathogenic stimuli. Such transcriptional changes are likely to be controlled by early gene transcription factors such as EGR-1. We therefore examined the regulation and role of EGR-1 in mature human neutrophils exposed to the inflammatory stimuli fMLP and IL-8. We report that human neutrophils rapidly and transiently up-regulate EGR-1 mRNA upon stimulation with fMLP or IL-8. However in contrast to that seen in other cells, EGR-1 mRNA expression profiles were not predictive of protein expression. Instead, we show that human neutrophils constitutively express EGR-1 protein. The cellular content of EGR-1 did not change over time or upon neutrophil activation. Confocal microscopy revealed that EGR-1 was present in both the cytoplasm and nuclei of un-stimulated neutrophils and that activation did not change this subcellular localization or promote nuclear translocation. Using chromatin immunoprecipitation, we demonstrate that EGR-1 is associated with the promoter regions of the immune regulatory genes IL-1 beta, TGFbeta-1 and MIF in both resting and activated neutrophils with increased promoter association observed upon cell activation. This novel pattern of EGR-1 protein expression may underlie the ability of the neutrophil to respond rapidly to inflammatory stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2010.03.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!