Two basal diets containing an adequate and a low supply of available P (4.7 vs 2.5 g/kg diet) and three others containing a low available P but supplemented with 250, 500 and 12,500 units of phytase (FTU) per kg diet, respectively, were prepared. Each diet was fed ad libitum to birds in six metabolism cages (five birds in each cage) in a randomised block design. It was found that birds fed a high (12,500 FTU) dosage of phytase grew faster (P<0.001) and retained proportionally more carotenoids in the liver (P<0.05) compared to birds fed unsupplemented diet. The results suggest that dietary phytase may improve the anti-oxidative status of birds fed low P diets through enhancing dietary carotenoid availability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2010.03.007DOI Listing

Publication Analysis

Top Keywords

performance energy
4
energy metabolism
4
metabolism hepatic
4
hepatic carotenoid
4
carotenoid content
4
content phytase
4
phytase supplemented
4
supplemented diets
4
diets fed
4
fed broiler
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Deciphering pH Mismatching at the Electrified Electrode-Electrolyte Interface towards Understanding Intrinsic Water Molecule Oxidation Kinetics.

Angew Chem Int Ed Engl

January 2025

Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid-liquid interface plays the main role in the "fake" OER performance.

View Article and Find Full Text PDF

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

Natl Sci Rev

January 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!