Complex spatio-temporal features in meg data.

Math Biosci Eng

Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, V.le A, Doria 6, 95125 Catania, Italy.

Published: October 2006

Magnetoencephalography (MEG) brain signals are studied using a method for characterizing complex nonlinear dynamics. This approach uses the value of d(infinity) (d-infinite) to characterize the system's asymptotic chaotic behavior. A novel procedure has been developed to extract this parameter from time series when the system's structure and laws are unknown. The implementation of the algorithm was proven to be general and computationally efficient. The information characterized by this parameter is furthermore independent and complementary to the signal power since it considers signals normalized with respect to their amplitude. The algorithm implemented here is applied to whole-head 148 channel MEG data during two highly structured yogic breathing meditation techniques. Results are presented for the spatio-temporal distributions of the calculated d(infinity) on the MEG channels, and they are compared for the dirrerent phases of the yogic protocol. The algorithm was applied to six MEG data sets recorded over a three-month period. This provides the opportunity of verifying the consistency of unique spatio-temporal features found in specific protocol phases and the chance to investigate the potential long term effects of these yogic techniques. Differences among the spatio-temporal patterns related to each phase were found, and they were independent of the power spatio-temporal distributions that are based on conventional analysis. This approach also provides an opportunity to compare both methods and possibly gain complementary information.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2006.3.697DOI Listing

Publication Analysis

Top Keywords

meg data
12
spatio-temporal features
8
spatio-temporal distributions
8
meg
5
complex spatio-temporal
4
features meg
4
data magnetoencephalography
4
magnetoencephalography meg
4
meg brain
4
brain signals
4

Similar Publications

The polarity of high-definition transcranial direct current stimulation affects the planning and execution of movement sequences.

Neuroimage

January 2025

Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:

Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.

View Article and Find Full Text PDF

Our visual system enables us to effortlessly navigate and recognize real-world visual environments. Functional magnetic resonance imaging (fMRI) studies suggest a network of scene-responsive cortical visual areas, but much less is known about the temporal order in which different scene properties are analysed by the human visual system. In this study, we selected a set of 36 full-colour natural scenes that varied in spatial structure and semantic content that our male and female human participants viewed both in 2D and 3D while we recorded magnetoencephalography (MEG) data.

View Article and Find Full Text PDF

Motor cortical high-gamma oscillations (60-90 Hz) occur at movement onset and are spatially focused over the contralateral primary motor cortex. Although high-gamma oscillations are widely recognized for their significance in human motor control, their precise function on a cortical level remains elusive. Importantly, their relevance in human stroke pathophysiology is unknown.

View Article and Find Full Text PDF

Repairbads: An automatic and adaptive method to repair bad channels and segments for OPM-MEG.

Neuroimage

January 2025

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:

The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments.

View Article and Find Full Text PDF

Altered cortical network dynamics during observing and preparing action in patients with corticobasal syndrome.

Neurobiol Dis

January 2025

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany. Electronic address:

Corticobasal syndrome (CBS) is characterized not only by parkinsonism but also by higher-order cortical dysfunctions, such as apraxia. However, the electrophysiological mechanisms underlying these symptoms remain poorly understood. To explore the pathophysiology of CBS, we recorded magnetoencephalographic (MEG) data from 17 CBS patients and 20 age-matched controls during an observe-to-imitate task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!