Nanostructure to microstructure self-assembly of aliphatic polyurethanes: the effect on mechanical properties.

J Phys Chem B

School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India.

Published: April 2010

We report the step by step self-assembly from nanostructure to microstructure (bottom-up approach through X-ray diffraction (1.6 nm), small angle neutron scattering (SANS) (11.6 nm), atomic force microscopy (70 nm smaller crystallite from enlarged image and 450 nm greater crystallites), and polarizing optical microscope (2 microm)) of aliphatic polyurethanes (PU) in contrast to aromatic polyurethanes depending on hard segment content (HSC). Polyurethanes of 10 to 80% HSC have been synthesized by using appropriate amount of polyol and chain extender. The effect of self-assembled patterns on mechanical properties both in solid and liquid state has been established exhibiting structure-property relationship of supramolecular polyurethanes. The crystallinity enhances but the degradation temperature decreases with increasing HSC. The characteristic length (measure of gap between lamellar crystallites), as revealed from SANS, gradually decreases with increasing HSC suggesting compactness of the crystallites through extensive hydrogen bonding. The Young's modulus increases with increasing HSC with a percolation threshold of hard segment (50%) while the toughness improves up to 30% HSC followed by gradual decrease in presence of bigger crystallites which promote brittle fracture. The origin of self-assembly in aliphatic PUs has been demonstrated through electronic structure calculations to form a loop structure with minimum intermolecular distance (2.2 A) while that distance is quite large in aromatic polyurethanes (4.6 A) that cannot form hydrogen bonds. The unique splintering of domain structure and its subsequent reformation under dynamic shear experiment has been established.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp100599uDOI Listing

Publication Analysis

Top Keywords

increasing hsc
12
nanostructure microstructure
8
self-assembly aliphatic
8
aliphatic polyurethanes
8
mechanical properties
8
aromatic polyurethanes
8
hard segment
8
decreases increasing
8
polyurethanes
6
hsc
6

Similar Publications

Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

Aging and chronic inflammation are associated with overabundant myeloid-primed multipotent progenitors (MPPs) amongst hematopoietic stem and progenitor cells (HSPCs). While HSC differentiation bias has been considered a primary cause of myeloid bias, whether it is sufficient has not been quantitatively evaluated. Here, we analyzed bone marrow data from the IκB- (Nfkbia+/-Nfkbib-/-Nfkbie-/-) mouse model of inflammation with elevated NFκB activity, which shows increased myeloid-biased MPPs.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.

View Article and Find Full Text PDF

How age affects human hematopoietic stem and progenitor cells and strategies to mitigate HSPC aging.

Exp Hematol

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin, China.. Electronic address:

Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation towards myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!