Cellular dynamic simulator: an event driven molecular simulation environment for cellular physiology.

Neuroinformatics

Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA.

Published: June 2010

In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933752PMC
http://dx.doi.org/10.1007/s12021-010-9066-xDOI Listing

Publication Analysis

Top Keywords

cellular dynamic
8
dynamic simulator
8
event driven
8
simulation environment
8
cds algorithm
8
cellular
6
environment
6
cds
6
simulator
4
simulator event
4

Similar Publications

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

The dynamics of focal adhesions (FAs) are essential physiological processes involved in cell spreading, metastasis, and regulation of the actin cytoskeleton. FAs are complex structures comprising proteins, such as paxillin and zyxin, which interact with extracellular membranes and influence cell motility and morphology. Although related studies have been reported in various cancers, the function and molecular mechanisms of oral squamous cell carcinoma (OSCC) remain unknown.

View Article and Find Full Text PDF

Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!