Granular shape biphasic calcium phosphate (BCP) bone grafts with and without doping of silicon cations were evaluated in regards to biocompatibility and MG-63 cellular response. To do this we studied Cellular cytotoxicity, cellular adhesion and spreading behavior and cellular differentiation with alizarin red S staining. Gene expression in MG-63 cells on the implanted bone substitutes was also examined at different time points using RT-PCR. In comparison, the Si-doped BCP granule showed more cellular viability than the BCP granule without doping in MTT assay. Moreover, cell proliferation was much higher when Si doping was employed. The cells grown on the silicon-doped BCP substitutes had more active filopodial growth with cytoplasmic webbing that proceeded to the flattening stage, which was indicative of well cellular adhesion. When these cells were exposed to Si-doped BCP granules for 14 days, well differentiated MG-63 cells were observed. Osteonectin and osteopontin genes were highly expressed in the late stage of differentiation (14 days), whereas collagen type I mRNA were found to be highly expressed during the early stage (day 3). These combined results of this study demonstrate that silicon-doped BCP enhanced osteoblast attachment/spreading, proliferation, differentiation and gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-010-4061-1DOI Listing

Publication Analysis

Top Keywords

enhanced osteoblast
8
bcp bone
8
cellular adhesion
8
gene expression
8
mg-63 cells
8
si-doped bcp
8
bcp granule
8
silicon-doped bcp
8
highly expressed
8
bcp
7

Similar Publications

Trends in Research of Odontogenic Keratocyst and Ameloblastoma.

J Dent Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM.

View Article and Find Full Text PDF

Background/purpose: Osseointegration potential is greatly depended on the interaction between bone cells and dental implant surface. Since zirconia ceramic has a bioinert surface, functionalization of the surface with an organic compound allylamine was conducted to overcome its drawback of minimal interaction with the surrounding bone.

Materials And Methods: The zirconia surface was initially treated with argon glow discharge plasma (GDP), then combined with amine plasma at three different conditions of 50-W, 75-W and 85-W, to prepare the final samples.

View Article and Find Full Text PDF

Bone fractures are a leading cause of morbidity and healthcare expenditure globally. The complex healing process involves inflammation, cartilage formation, mineralization, and bone remodeling. Current treatments like immobilization, surgery, and bone grafting, though effective, pose significant challenges, such as prolonged recovery and high costs.

View Article and Find Full Text PDF

Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging.

View Article and Find Full Text PDF

Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs.

Adv Mater

January 2025

Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.

Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!