Stimulation of the human visual cortex produces a transient perception of light, known as a phosphene. Phosphenes are induced by invasive electrical stimulation of the occipital cortex, but also by non-invasive Transcranial Magnetic Stimulation (TMS)(1) of the same cortical regions. The intensity at which a phosphene is induced (phosphene threshold) is a well established measure of visual cortical excitability and is used to study cortico-cortical interactions, functional organization (2), susceptibility to pathology (3,4) and visual processing (5-7). Phosphenes are typically defined by three characteristics: they are observed in the visual hemifield contralateral to stimulation; they are induced when the subject s eyes are open or closed, and their spatial location changes with the direction of gaze (2). Various methods have been used to document phosphenes, but a standardized methodology is lacking. We demonstrate a reliable procedure to obtain phosphene threshold values and introduce a novel system for the documentation and analysis of phosphenes. We developed the Laser Tracking and Painting system (LTaP), a low cost, easily built and operated system that records the location and size of perceived phosphenes in real-time. The LTaP system provides a stable and customizable environment for quantification and analysis of phosphenes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164072PMC
http://dx.doi.org/10.3791/1762DOI Listing

Publication Analysis

Top Keywords

phosphenes induced
8
transcranial magnetic
8
magnetic stimulation
8
phosphene threshold
8
analysis phosphenes
8
phosphenes
7
stimulation
5
novel approach
4
approach documenting
4
documenting phosphenes
4

Similar Publications

Previous research demonstrated that transcranial alternating current stimulation (tACS) can induce phosphene perception. However, tACS involves rhythmic changes in the electric field and alternating polarity (excitatory vs. inhibitory phases), leaving the precise mechanism behind phosphene perception unclear.

View Article and Find Full Text PDF

Construction of 4-Vinyl-1,2-oxaphospholane 2-Oxides from Vinyloxiranes and Phosphoryl Diazomethanes.

Org Lett

January 2025

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

Various 4-vinyl-1,2-oxaphospholane 2-oxides are prepared in good to excellent yields from vinyloxiranes and in situ-generated phosphenes from phosphoryl diazomethanes via the phosphene-induced ring expansion of oxiranes. The reaction is a novel and expeditious strategy for the synthesis of 1,2-oxaphospholane 2-oxide derivatives, featuring ring expansion of readily available starting materials, high atom economy, no catalyst, a fast reaction rate, broad functional group tolerance, high yields, and separable diastereomers.

View Article and Find Full Text PDF

Retinal prosthetic devices aim to repair some vision in visually impaired patients by electrically stimulating neural cells in the visual system. Although there have been several notable advancements in the creation of electrically stimulated small dot-like perceptions, a deeper comprehension of the physical properties of phosphenes is still necessary. This study analyzes the influence of two independent electrode array topologies to achieve single-localized stimulation while the retina is electrically stimulated: a two-dimensional (2D) hexagon-shaped array reported in clinical studies and a patented three-dimensional (3D) linear electrode carrier.

View Article and Find Full Text PDF

Low-intensity transcranial electrical stimulation (tES), including techniques like transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and oscillatory transcranial direct current stimulation (otDCS), has been widely explored for its neuromodulatory effects on motor, cognitive, and behavioral processes. Despite well-established safety, these techniques can induce varying degrees of discomfort and side effects, potentially impacting their application. This study presents a within-subject sham-controlled experiment directly comparing the subjective experience and side effects of tDCS, tACS, and otDCS.

View Article and Find Full Text PDF

Looming sounds are known to influence visual function in the brain, even as early as the primary visual cortex. However, despite evidence that looming sounds have a larger impact on cortical excitability than stationary sounds, the influence of varying looming strengths on visual ability remains unclear. Here, we aim to understand how these signals influence low-level visual function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!